تبیین بخشبندی مشتریان بازارهای صنعتی با نقشه های خودسازمان ده | ||
کاوشهای مدیریت بازرگانی | ||
مقاله 1، دوره 12، شماره 24، اسفند 1399، صفحه 1-18 اصل مقاله (375.74 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/bar.2021.4273.1534 | ||
نویسندگان | ||
آفرین اخوان* 1؛ فرزانه جهادی نائینی2؛ محمدحسین ابویی3 | ||
1استادیار، گروه مهندسی صنایع- مدیریت سیستم و بهرهوری، دانشگاه علم و هنر، یزد، ایران | ||
2کارشناسی ارشد مهندسی صنایع، دانشگاه علم و هنر، یزد، ایران | ||
3استادیار، گروه مهندسی صنایع، دانشگاه یزد، یزد، ایران | ||
چکیده | ||
چالش روند فزاینده تغییرات محیطی، شدت رقابت و گذر از دوران انحصاری به فضای رقابت، شرکتها را به سمت بازاریابی پویا (بازاریابی هدفمند) سوق داده است. با توجه به اینکه ارتقای سطح رضایتمندی مشتریان و همچنین افزایش سودآوری و رشد پایدار از راهبُردهای اصلی شرکت فولاد مبارکه به شمار میروند؛ هدف از این پژوهش، کمک به تحققبخشی راهبُردهای مذکور از طریق هدفمند ساختن سازمان در راستای سفارشیسازی خدمات، بر مبنای ویژگیهای برجسته و شاخصهای رفتاری مشتریان بازار صنعتی است. در این پژوهش به دلیل ضرورت شناخت مشتریان مختلف، جهت ارائه خدمات متناسب با خصوصیات هر بخش، از نقشههای خودسازمانده برای بخشبندی و شناسایی ویژگیهای مشتریان شرکت استفاده شدهاست. مطابق یافتههای پژوهش مشتریان بازار داخل شرکت فولاد مبارکه اصفهان، بر اساس 95 معیار مستخرج از 48 شاخص (جمعیتشناختی، جغرافیایی، عملیاتی، رفتاری و وضعیتی)، در پنج خوشه که بر مبنای متغیرهای شیوههای خرید (RFM)، به صورت مشتریان طلایی، مشتریان خاص، مشتریان وفادار، مشتریان رویگردان و مشتریان مشکوک نامگذاری شدهاند، قرار گرفته اند. | ||
کلیدواژهها | ||
بازار فولاد؛ بازاریابی هدفمند؛ بخش بندی مشتریان؛ نقشه های خودسازمان ده؛ RFM | ||
عنوان مقاله [English] | ||
Explain the segmentation of customers in industrial markets based on self-organized maps | ||
نویسندگان [English] | ||
Afarin Akhavan1؛ Farzaneh Jahadi Naeini2؛ Mohammad Hossein Abooie3 | ||
1Assistant Professor, Industrial Engineering Group, Science and Arts University, Yazd, Iran | ||
2Master of Industrial Engineering, Science and Arts University, Yazd, Iran | ||
3Assistant Professor, Industrial Engineering Group, Yazd University, Yazd, Iran | ||
چکیده [English] | ||
Challenges for the growing trend of environmental changes, the intensity of competition and the transition from monopoly era to competitive environment have driven firms to dynamic marketing for targeted marketing. Given that improving customer satisfaction and increasing profitability and sustainable growth are among the main strategies of Mobarakeh Steel Company. The goal of this research is to contribute to realization of these strategies by targeting the organization in order to customize its services based on prominent characteristics and behavioral indices of industrial customers. In this paper, because of the necessity of identify different customers, to provide services tailored to the characteristics of each sector, the self-organizing maps have been used for segmenting customers and identifying their characteristics. The findings indicate that the domestic market customers of Mobarakeh Steel Company, based on 95 criteria derived from 48 indicators (demographic, geographic, operational, behavioral and situational), are put into five clusters that have been named based on procurement practices variables (RFM), as Golden customers, special customers, loyal customers, churned customers and suspicious customers. | ||
کلیدواژهها [English] | ||
Steel Market, Targeted Marketing, Customer Segmentation, Self-Organized Maps, RFM | ||
مراجع | ||
Baker, K., Bull, G. & LeMay, V. (2014). The Use of Fuelwood Market Segmentation and Product Differentiation to Assess Opportunities and Value: A Nicaraguan Case Study. Energy for Sustainable Development, 18, 58-66.
Boejgraad, J. & Ellegaard, C. (2010). Unfolding Implementation in Industrial Market Segmentation. Industrial Marketing Management, 39, 1291-1299.
Cuadros, A. & Dominguez, V. (2014). Customer Segmentation Model Based on Value Generation for Marketing Strategies Formulation. Estudios Gerenciales, 30, 25-30.
Dzobo, O., Alvehag, K., Gaunt, C. & Herman, R. (2014). Multi-Dimensional Customer Segmentation Model for Power System Reliability-Worth Analysis. Electrical Power and Energy Systems, 62, 532-539.
Hiziroglu, A. (2013). Soft Cumputing Applications in Customer Segmentation: State-of-Art Review and Critique. Expert Systems with Applications, 40, 6491-6507.
Hiziroglu, A. & Sengul, S. (2012). Investigating Two Customer Lifetime Value Models from Segmentation Perspective. Procedia- Social Behavorial Sciences, 62, 766-774.
Hong, C. (2012). Using the Taguchi Method for Effective Market Segmentation. Expert Systems with Applications, 39, 5451-5459.
Kalafatis, S. & Tsogas, M. (1998). Business Segmentation Bases: Congruence and Perceived Effectiveness. Journal of Segmentation in Marketing, 2(1), 36-63.
Kotler, P. & Armstrong, G. (2012). Principles of Marketing (14nd ed.). New Jersey: Pearson.
Lee, J. & Park, S. (2005). Intelligent Profitable Customers Segmentation System Based on Business Intelligence Tools. Expert Systems with Applications, 29, 145-152.
Mark, T., Lemon , K., Vandenbosch, M., Bulla, J., & Marutti, A. (2013). Capturing the Evolution of Customer-Firm Relationships: How Customers Become More (or Less) Valuable Over Time. Journal of Retailing, 89, 231-245.
Migueis, V., Camanho, A., & Cunha, J. (2012). Customer Data mining for Lifestyle Segmentation. Expert Systems with Applications, 39, 9359-9366.
Mostafa, M. (2011). A Psycho-Cognitive Segmentation of Organ Donors in Egypt Using Kohonen's Self-Organizing Maps. Expert Systems with Applications, 6(38), 6906-6915.
Muller, H. & Hamm, U. (2014). Stability of Market Segmentation with Cluster Analysis –A Methodological Approach. Food Quality and Preference, 34, 70-78.
Nagi, E., Xiu, L. & Chau, D. (2009). Application of Data Mining Techniques in Customer Relationship Management: A Literature Review and Classification. Expert Systems with Applications, 36, 2592-2602.
Olson , D. & Chae, B. (2012). Direct Marketing Decision Support Through Predictive Customer Response Modeling. Decision Support System, 154, 443-451.
Wang, Y., Ma, X., Lao, Y., & Wang, Y. (2013). A Fuzzy-Based Customer Clustering Approach with Hierarchical Structure for Logistics Network Optimization. Expert Support System.
Wind, Y. (1978). Issue and Advances in Segmentation Research. Journal of Marketing Research, 3(15), 317-337.
| ||
آمار تعداد مشاهده مقاله: 812 تعداد دریافت فایل اصل مقاله: 903 |