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Keywords  Abstract 

A fourth order formulation of the displacement discontinuity 
method (DDM) is proposed for the crack analysis of brittle solids 
such as rocks, glasses, concretes and ceramics. A fourth order 
boundary collocation scheme is used for the discretization of each 
boundary element (the source element). In this approach, the source 
boundary element is divided into five sub-elements each recognized 
by a central node where the displacement discontinuity components 
are to be numerically evaluated. Three different formulating 

procedures are presented and their corresponding discretization schemes are discussed. A new discretization 
scheme is also proposed to use the fourth order formulation for the special crack tip elements which may be 
used to increase the accuracy of the stress and displacement fields near the crack ends. Therefore, these new 
crack tips discretizing schemes are also improved by using the proposed fourth order displacement 
discontinuity formulation and the corresponding shape functions for a bunch of five special crack tip 
elements. Some example problems in brittle fracture mechanics are solved for estimating the Mode I and 
Mode II stress intensity factors near the crack ends. These semi-analytical results are compared to those cited 
in the fracture mechanics literature whereby the high accuracy of the fourth order DDM formulation is 
demonstrated.  
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1. INTRODUCTION 

A variety of analytical, semi-analytical and 
numerical analyses of cracks have been 
accomplished by several researchers in the field of 
fracture mechanics [1–10]. The analytical 
methods give exact solutions but are usually 
limited to the crack problems with simple 
geometry and loading conditions. The 
approximate methods are either semi-analytic or 
numeric. The semi-analytical or semi-numerical 
methods usually give more accurate results. This 
is due to existence of analytical solutions for the 
problem by exact methods [11]. The approximate 
solution procedures are based on the variational 
methods such as minimum potential energy and 
Ritz methods [12–15]. Semi-analytical procedures 
such as the indirect boundary element method are 
based on the semi-analytical solution of a system 
of integral equations and/or a system of partial 
differential integral equations on the boundary of 
physical problems [16–18]. The well-known 
numerical procedures used in the recent years 

includes the finite difference method (FDM), the 
finite element method (FEM) [19–21], the direct 
boundary element method (BEM) or the boundary 
integral method (BIM) [22–25], and the dual 
boundary element method (DBEM) [25–29]. 
These methods can be used to solve various 
complex problems in elasticity and fracture 
mechanics [30–34].  

Recently, the boundary collocation schemes 
have been used to formulate semi-analytical 
methods such as the displacement discontinuity 
method (DDM) which is a subdivision of the dual 
indirect boundary element method (DIBEM) [35–
38].  

The higher order displacement discontinuity 
elements and higher order special crack tip 
elements have been used to solve some fracture 
mechanics problems and to increase the accuracy 
of the first and second mode stress intensity 
factors which are important in the study of rock 
fracture mechanics [39–42]. The method was 
further developed to solve the kinked and curved 
crack problems [43,44]. In all of the previous 
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works, a system of partial differential integral 
equations was solved on the boundary of any 
boundary value problem (BVP) occuring in the 
field of rock fracture mechanics. The method was 
also extended to solve the infinite, finite and semi-
infinite problems in elasticity and fracture 
mechanics [40,45].  

In the present study, a hybridized semi-
analytical method is proposed which incorporates 
the higher order indirect boundary element 
method for the crack analysis of the finite and 
infinite plane elasticity problems. The proposed 
method is verified against some well-known 
fracture problems.  

Also this method is compared with a third 
order formulation which showed the higher 
accuracy of the proposed method while using less 
elements. Verification and comparison showed 
the validity and applicability of the method for 
both finite and infinite problems. 

2. DEVELOPMENT OF THE FOURTH ORDER 
DISPLACEMENT DISCONTINUITY 
FORMULATION 

The displacement discontinuity method is an 
indirect dual boundary element method 
developed by Crouch [46] for solving two-
dimensional (plane strain) elasto-static problems 
in solid mechanics with implications in rock 
mechanics and geological engineering [16]. 
Displacement discontinuity components in a two-
dimensional Cartesian coordinates are defined as 
the difference between shear and normal 
displacements on the negative and positive sides 
of a line crack, respectively (Fig. 1). A general 

displacement discontinuity distribution  

along a crack length 2a, is shown in Fig.1 (a).  

Taking the ux and uy components of  to be 

constant and equal to Dx and Dy respectively, in the 
interval (-a, +a), Fig. 1 (b) shows two displacement 
discontinuity element surfaces; one on the 
positive side of y (y=0+) and another one on the 
negative side (y= 0-). It may be assumed that the 
displacement undergoes a constant change in 
value when passing from one side of the 
displacement discontinuity element to the other 
side. Therefore, the constant element 
displacement discontinuities Dx and Dy can be 
formulated as: 

 (1) 

 

Figure 1. a) Displacement discontinuity distribution, )(ˆ u along a general boundary element of length 2a; b) 

The constant shear and normal displacement discontinuity components 
xD and yD  with a positive sign 

convention. 

The displacements and stresses for a line crack 
in an infinite body along the x-axis can be written 
in terms of the harmonic functions g(x,y) and f(x,y) 
in the displacement discontinuity version of the 
indirect boundary element method [16].  

Considering a plain strain condition, the shear 
and normal displacements can be expressed as: 
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where G  is shear modulus,   is the Poisson's 

ratio. 

In the fourth order formulation of the 
displacement discontinuities along an ordinary 
higher order boundary element of length 2a, each 
boundary element is divided into five sub-
elements of lengths 2a1, 2a2, 2a3, 2a4 and 2a5,  

having the nodal displacement discontinuities 1
iD

, 2
iD , 3

iD , 4
iD  and 5

iD  at the five nodes located at 

)(ˆ u

)(ˆ u
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the center of the corresponding sub-elements, 
respectively (Fig. 2). 

 

Figure 2. General discretization scheme of a fourth 
order displacement discontinuity element. 

Generally, the displacement discontinuity 
function, (Dk(ξ)) can be divided into five equal sub-
elements each containing a central node for which 
the nodal DD is evaluated numerically (the 
opening displacement discontinuity Dy and sliding 
displacement discontinuity Dx) [41]. 
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Where Dk1 (i.e. Dx1 and Dy1), Dk2 (i.e. Dx2 and Dy2), 
Dk3 (i.e. Dx3 and Dy3), Dk1 (i.e. Dx4 and Dy4) and Dk5 
(i.e. Dx5 and Dy5) are the fourth order nodal 
displacement discontinuities. A general fourth 
order displacement discontinuity element can be 
discretized as shown in Fig. 2. 

The displacements and stresses for a line crack 
in an infinite body along the x-axis, in terms of 
single harmonic functions g(x,y) and f(x,y), are 
given in Eqs. 2 and 3 [46], in which these potential 
functions for the fourth order DD element case can 
be found from: 
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in which the common function Fj, is defined as 
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where the integrals I1 to  I5 can be deduced 
from the shape functions Nj(ξ). The shape 
functions Nj(ξ) can be obtained from three 
formulations: i) General sub-elements; ii) 
Symmetrical sub-elements; and iii) Iso-sub-
elements or sub-elements of equal lengths. 

Three types of these shape functions may be 
obtained based on three discretization schemes: 
(i) Discretization scheme for boundary elements 
with unequal sub-elements; (ii) Discretization 

scheme for boundary elements with symmetrical 
sub-elements; and (iii) Discretization scheme for 
boundary elements with five equal sub-elements. 

2.1. General shape function formulation (unequal 
sub-elements) 

Consider the discretization scheme shown in 
Fig. 2 in which the third nodal displacement 

discontinuity 3
iD  is located at the origin of the 

local coordinate of the boundary element (at the 
center of third sub-element). The first and second 

nodal displacement discontinuities 1
iD  and 2

iD  

are located on the left side and the fourth and fifth 

nodal displacement discontinuities 4
iD  and 5

iD  

are located on the right side of the central (or 
third) sub-element, respectively.  

The general sub-elements of fourth order 
(considering a1≠a2≠a3≠a4≠a5 in Fig. 2) in which a is 
crack half-length and a=a1+a2+a3+a4+a5 can be 
defined based on the displacement discontinuity 
function Di(ξ) as 

  yxiEDCBADi ,432      ,  (7) 

This formulation can be expressed in form of 
the shape function Nj(ξ) as 
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By taking the center of the displacement 
discontinuity element as the origin of the local x,y 
coordinate, the constant A=Di3 and the shape 
functions Nj(ξ) can be expressed as: 
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where the constants B1, B2, …, C1, C2, …, etc. are 
given in appendix A. This formulation is somewhat 
complicated; therefore, the symmetrical sub-
element formulation and the equal length sub-
element formulation can be effectively used. 
However, in the case of crack tips, the general 
fourth order DD formulation can be effectively 
used for the crack tips. 

The discretization scheme presented in Fig. 3 
may be more useful, where l1=2a1, l2=2a2, l3=2a3=, 
l4=2a4, l5=2a5 and L=2(a1+a2+a3+a4+a5)=2a. For 
a1=l/20, then a2=3l/40, a3=l/10, a4=l/8, a5=3l/20. 

 

Figure 3. Discretization for a 4th order DD element 
with sub-elements of unequal lengths. 
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The fourth order shape functions )(jN can be 

defined to write the fourth order variation of the 
shear and normal displacement discontinuities, 

yxi
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And N1(ε), N2(ε), N3(ε), N4(ε) and N5(ε) are the 
displacement collection shape functions for the 

corresponding displacement discontinuities, 
1
iD , 

2
iD , 

3
iD , 

4
iD  and 

5
iD respectively. Inserting Eq. (7) 

into Eq. (4) and rearranging the terms, a common 
special function ),( yxF as given in Equation (6) 

can be obtained as: 
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where the common function 

),,,,( 54321 IIIIIFj  given in Eq. (6) can be 

calculated from the integrals 
54321 ,,,, IIIII as 

 

  

       

  

   

   6735.1)ln()ln(2

)ln()ln(86325.0

)(ln),(

33

2
ln3

3

1
ln3

3

1

3
3

)(ln),(

ln5.0)()(ln),(

2)ln()()ln()()()(ln),(

323
21

22

21
4422224

21
22223

4

3
22

2
332

1
332

21
22222

3

2

1222
21

22
2

2121
22

1

xaaxyaxrraxax

rryaxayxx

yxxydyxyxI

a
yx

a
raxxyraxxy

yx
y

dyxyxI

ax
r

r
axyxydyxyxI

araxraxydyxyxI

a

a

a

a

a

a

a

a




















































 

(12) 

 

and θ1, θ2, r1, and r2 are defined as: 
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For an element of length L=2a, where 
L=l1+l2+l3+l4+l5 (as shown in Fig. 3), the integral,
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fourth order displacement discontinuity 
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By taking z=x-ξ and dξ=-dz then –a<ξ<a and x-
a<z<x+a. 
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It should be noted that the integrals I1, I2, I3 and 
I4 and their derivatives are completely explained 
by the second author in [39]. The shape functions 

)(jN and the integral 5I  and its derivatives can 

be obtained as explained in the appendices A and 
B of this paper. 

2.2. Symmetrical sub-elements formulation 

The symmetrical sub-element formulation for 
the fourth order displacement discontinuity 
variation along a boundary of length 2a′ may be 
performed based on the discretization shown in 
Fig. 4. The displacement discontinuity function 
Di′(ξ) is considered as  
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Figure 4. Fourth order collocation for the 
symmetrical displacement discontinuity elements. 

This formulation can be written in the form of 
shape function N′j(ξ) as: 
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The shape functions N′j(ξ)  for a symmetrical 
element can be defined as: 

 

(17) 

where the constants B′1, B′2,  …, C′1, C′2, …, etc. 
are given in appendix A. 

2.3. Equal sub-elements formulation 

The equal sub-element formulation for the fourth 
order displacement discontinuity variation along 
a boundary of length 2a'′ may be expressed based 
on the discretization shown in Fig. 5 by taking 
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Figure 5. Fourth order collocation for the 
displacement discontinuities with equal sub-
elements. 

This formulation can be written in form of the 
shape function N′′j(ξ) as: 

 
(19) 

The constants A′′, B′′, C′′, D′′, and E′′ are 
expressed as: 
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The equal sub-element formulation of 
displacement discontinuity can also be used for 
crack tip discretization.  

2.4. Special crack tip element (fourth order 
displacement discontinuity formulation) 

Since the singularities of the stresses and 
displacements near the crack ends may reduce 
their accuracies, special crack tip elements are 
used to increase the accuracy of the DDs near the 
crack tips [39]. As shown in Fig. 6, the DD variation 
for five nodes can be formulated using a special 
crack tip element containing five nodes (or having 
five special crack tip sub-elements as shown in Fig. 
3). 
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Figure 6. A crack tip with five sub-elements. 

Considering a crack tip element with five equal 
sub-elements (a1=a2=a3 =a4=a5), the shape 
functions NC1(ξ) to NC5(ξ)  can be obtained as 
equations:  
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(21) 

Constants C′′13, C′′23, etc. are given in appendix C. 

By substituting Eq. (21) into Eq. (20) and then 
substituting these equations into Eq. (4) and (5) 
and following the procedures similar to those 
given for the derivation of the general potential 

function ),,,,( 54321 IIIIIF j  in Eq. (6), the 

general potential function FC(x,y) for the crack tip 
element can be expressed as: 
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The potential function )( CKCj IF  for special 

crack tip elements can be written in the following 
form 51
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And from this, the following integrals are 
deduced: 
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Following the procedure explained by [39] the 
complete solution of the integrals given in Eqs. 
(24) are presented in Appendix D. Based on the 
linear elastic fracture mechanics (LEFM) 
principles, the Mode I and Mode II stress intensity 
factors KI and KII can be easily deduced [6,39]. A 
crack tip element of length 2a is considered then 
the stress intensity factors with respect to the 
normal and shear displacement discontinuities 
(assuming plane strain condition), are determined 
[47] as:  
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 (25) 

where, µ is the shear modulus and ν is Poisson’s 
ratio of the brittle material. 

3. VERIFICATION OF THE FOURTH ORDER 
DISPLACEMENT DISCONTINUITY 
FORMULATION 
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Some example problems such as center slant 
cracks, curved cracks, and double-edge cracks are 
being used to verify the fourth order displacement 
discontinuity formulations presented in this 
research. The general curved cracks can be 
considered as elliptical cracks with different ratios 
of the minor axis (c) to the major axis (b) (i.e. c/b 
ratio).  

3.1. Center slant crack (c/b=0) under far field 
tension 

The center slant crack under far field tension is 
shown in Fig. 7. The slant angle β = 45° and half 
crack length a=1m are assumed in the analysis. A 
crack tip element length to half crack length ratio 
l/a= 0.1 has been used for the numerical solution 
of the problem. The analytical solution of the first 
and second mode SIFs, KI and KII, for the center 
slant crack problem are given as [48,49]: 





cossin

sin 2

aK

aK

II

I



   
 (26) 

 

Figure 7. Center slant crack under far field 
tension. 

As it can be seen in Fig. 8 the error in SIF 
calculation is less than 0.008% for all points 
except for KII in β=75° which is less that 0.014%. 
The proposed formulation manages to offer high-
precision predictions for all line cracks. In the next 
section, the accuracy of the formulation in dealing 
with more complicated cracks, i.e. curved cracks, 
will be investigated. 

 

Figure 8. Percentage error in SIFs prediction 
for central slant cracks using fourth order 
DDM. 

3.2. Circular crack (c/b=1) 

Circular (c/b=1) or curved (0<c/b<1) cracks 
may occur in cracked bodies [39,43,47]. The 
analytical values of KI and KII for a general circular 
crack of Fig. 9 may be expressed as [50]: 
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Figure 9. Curved crack in an infinite body 
under biaxial tension. 

Fig. 10 shows the percentage error of 
numerical values of stress intensity factors, KI and 
KII, for different α angles. Fig. 11 shows analytical 
and numerical values for different α angles. As it 
can be seen the new formulation produces better 
results as α grows.  

 

Figure 10.  Percentage error in SIFs 
predictions of various circular cracks. 

3.3. Elliptical cracks 

The line and circular cracks set two limits for 
curved cracks defined by the ratio of ellipsis 
radiuses shown in Fig. 12. Normalized values of 
SIFs for different curvature ratios from 0 (line 
crack) to 1 (circular crack) are also presented in 
Fig. 12.  
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Figure 11. Analytical and numerical values of 
SIFs for various circular cracks. 

 

Figure 12. Normalized stress intensity factors 
for different ellipsis radiuses (c/b ratios) for 
α=90. 

Fig. 13 demonstrates the initiation angle for 
the same cracks presented in Fig. 12. For c/b=0 
(i.e. a line crack) the crack has obviously 
propagated in its original plane, while for c/b=1 
(i.e. circular crack) initiation occurs at about 35° 
(as predicted from analytical equations). 

 

Figure 13. Crack propagation angle for 
different ellipsis radiuses (c/b ratios) for 
α=90. 

3.4. Double- edge cracks in a finite plane 

For the problem shown in Fig. 14, let the width 
of the plate, W=1 m, b/W = 0.1, the normal stress, 

10 MPa  and the Poisson’s ratio 0.2  , then 
the analytical normalized value of 

1215.1)/( bKI   [6]. 

The fourth order formulation of displacement 
discontinuity method is being used to find the 

normalized values of )/( bK I  considering the 

effects of the number of elements along the crack 
in a double edge crack problem (Fig. 15). 

 

Figure 14. A double edge crack in a finite plate 
with W=1 m. 

 

Figure 15. The analytical and numerical values 
of the normalized Mode I stress intensity 

factor, )/( bK I  , for the double edge crack, 

using different number of elements along the 
crack and l/b=0.1 

Let the ratio of crack tip element length, l, to 
crack length, b, change as 

0.4, and 0.35  ,0.3  , ,0.250.2 0.15, 0.1, 
b

l
,05.0 and 

taking the number of elements along the 
boundaries of the problem as 60 and those along 
the crack as 10, the computed results for 

)/( bK I  are compared with the 

corresponding analytical value (Fig. 16). 
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Fig. 16. The analytical and numerical values of 
the normalized Mode I stress intensity factor, 

)/( bK I  , for the double edge crack using 

different crack tip length to crack length ratios 
(different l/b ratios). 

Fig. 17 shows the effects of different crack 
length to width ratios (different b/w ratios) on the 

value of )/( bK I   for a double edge crack 

problem. The normalized SIF is evaluated using 
the third order and the proposed fourth order 
elements. 

 

Fig. 17. The error in estimating numerical 
values of the normalized Mode I stress 

intensity factor, )/( bK I  , for the double 

edge crack using different crack length to 
width ratios (different b/w ratios) for the third 
and the fourth order elements. 

As it can be seen, the proposed higher order 
element can achieve a higher accuracy in 
comparison to the previous used third order 
elements in estimating the stress intensity factor. 
The error reaches values of around 36% and 26% 
for the third and the fourth order elements 
respectively for b/w=0.4. The high values of error 
are due to boundary effect. Increasing b/w ratio 
decreases the distance between crack tips and 
distance of crack tips from the boundaries.  

4. CONCLUSIONS 

The fourth order formulation of displacement 
discontinuity for the crack analysis was presented 

in this paper. Some special discretization schemes 
were developed to make the formulation more 
robust and concise. The details of the formulations 
with different integrals and derivatives required 
in the fourth order solution of displacement 
discontinuities along each boundary element were 
given in the text and relevant appendices.  It has 
been shown that the special crack tip elements can 
also be formulated based on the fourth order 
displacement discontinuity formulation 
presented in this research. Several problems were 
selected as instances from the fracture mechanics 
literature to verify the numerical results obtained 
by the present formulation.   

The special singular integrals derived in the 
solution of stress and displacement fields near the 
crack tips while using the semi-analytical indirect 
boundary element method. The new formulations 
and the corresponding derivatives were given in 
detail in the text and in the appendices (A, B and 
C) of this paper. This method is a hybridized semi-
analytical method which gives a general solution 
of the displacement and stress fields near the 
crack ends based on which Mode I and Mode II 
(mixed mode) stress intensity factors (i.e. 

  and III KK or their normalized forms 

)/( bK I  , and )/( bK II  , respectively), for 

different example problems of fracture mechanics, 
can be obtained with a very high accuracy (less 
than one percent errors in most cases when the 
higher order elements and special crack tip 
elements are being used simultaneously). The 
results obtained by using the 4th order 
formulations of displacement discontinuity were 
compared with the corresponding results 
obtained by using the analytical methods cited in 
the literature. These comparisons validated the 
higher accuracy of the present formulation in the 
crack analysis of brittle solids. The proposed 
fourth order elements were also compared with 
the third order elements already available. The 
comparison showed the higher accuracy of the 
fourth order elements. The proposed fourth order 
elements may be used to solve fracture and elastic 
problems with a higher accuracy.   
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APPENDIX A 

A.1. Constants for general shape functions: 
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And finally for B5 to E5: 
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A.2. Constants for symmetrical shape 
functions: 

Let 3211 2 aaaS  and 322 aaS  , then: 
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APPENDIX B 

The required partial differential equations for I5 
are as follows: 
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Where constant integrals B11 and its derivatives 
are: 
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The integral B12 and its derivatives: 
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the derivation Lx,x, Lx,y, Lx,xy, Lx,yyetc. are: 
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And the derivation of B12,x, B12,y, B12,xy, B12,yy, etc, can 
be defined as 
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 APPENDIX C 

Constants defining crack tip shape functions: 
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APPENDIX D 
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Assuming equal sub-elements a1=a2=a3=a4=a5, 
this one may be obtained. 

  2
9

15
2

7

14
2

5

13
2

3

12
2

1

111
1 aCaCaCaCaCaD cccccic



       

    2
9

15
2

7

14

2
5

13
2

3

12
2

1

111
2

33

3333

aCaC

aCaCaCaD

cc

cccic





       

    2
9

15
2

7

14

2
5

13
2

3

12
2

1

111
3

55

5555

aCaC

aCaCaCaD

cc

cccic





       

    2
9

15
2

7

14

2
5

13
2

3

12
2

1

111
4

77

7777

aCaC

aCaCaCaD

cc

cccic





       

    2
9

15
2

7

14

2
5

13
2

3

12
2

1

111
5

99

9999

aCaC

aCaCaCaD

cc

cccic





Let s1c=a1, s2c=2a1+a2, s3c=2(a1+a2)+a3, 
s4c=2(a1+a2+a3)+a4 and S5c=2(a1+a2+a3+a4)+a5, 
then 

 

2
9

15
2

7

14

2
5

13
2

3

12
2

1

111
1

cccc

ccccccc

sCsC

sCsCsCsD
ic





 

  cccccccccc

cc

ssssssssss

ss
sc

231321
2
321

2
1

1

32
31






 

  3021
2

1

2

2
1

2
2

1

13
32

scsss

sss
sc

ccc

ccc






, 30
2

1

3

33

1

scs

sc

c



 

30

3
31

2
22

2
1

2
23321

2
13

34
sc

ssssssssssss
sc cccccccccccc 



)

(
1

4
3

3
21

2
2

2
12

3
1

3
3
23

2
2132

2
1

3
13

30
35

ccccccc

ccccCccccc

sssssss

ssssssssss
sc

sc




 

 
3121

31
2

1

1

2
11 scss

sss

s
sc cc

ccc

c 




 , 

scss
ss

s
sc cc

cc

c
21

21

2
1

1
12 


 , 332113 scsssc cc , 

2
212

2
1342114 cccccc ssssscsssc 

, 

2
2

2
1

3
212

3
1352115 cccccccc ssssssscsssc   

 
  3121

211

21

1
scss

sss
sc cc

ccc




 , 

 
  3221

212

22

1
scss

sss
sc cc

ccc





 , 

  332123 scsssc cc 

  3421
2
221

2
124 scsssssssc cccccc  , 

  3521
3
2

2
212

2
1

3
125 scsssssssssc cccccccc 

 

3

4

2

4344241440 ccc ssscsscscsc 
 

41
40

2
43142111

41 C
sc

sscsscsc
sc cc 


 , 

42
40

2
43242212

42 C
sc

sscsscsc
sc cc 


 , 

43
40

2
43342313

43 C
sc

sscsscsc
sc cc 


 , 

 44

404

44

1
C

scs
sc

c

  

45
40

4
4

2
43542515

45 C
sc

ssscsscsc
sc ccc 




 

41141111 scscscC  , 42141212 scscscC  , 

 43141313 scscscC  , 441414 scscC  , 

 45141515 scscscC   

41242121 scscscC  , 42242222 scscscC  , 

 43242323 scscscC  , 442424 scscC  , 
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 45242525 scscscC 
 

41343131 scscscC  , 42343232 scscscC 
, 

 43343333 scscscC  , 443434 scscC 
,  

45343535 scscscC 
 

4
545

2
535

2
52551550 cccc sscsCsCsCC 

 

50

3
541

2
53152111

51
C

sscsCsCC
C ccc 

 , 

50

3
542

2
53252212

52
C

sscsCsCC
C ccc 

  

50

3
543

2
53352313

53
C

sscsCsCC
C ccc 

 , 

50

3
544

2
53452414

54
C

sscsCsCC
C ccc 

  

505

52

1

Cs
C

c



 

51151111 CCCC  , 52151212 CCCC  , 

53151313 CCCC  , 54151414 CCCC  , 

551515 CCC   

51252121 CCCC  , 52252222 CCCC   

53252323 CCCC  , 54252424 CCCC  ,  

552525 CCC   

51353131 CCCC  , 52353232 CCCC  , 

 53353333 CCCC  , 54353434 CCCC  ,  

553535 CCC   

51454141 CscscC  , 52454242 CscscC  , 

 53454343 CscscC  , 54454444 CscscC  , 

554545 CscC   

Substituting following equations 

5
15

4
14

3
13

2
12

1
111 icicicicicc DCDCDCDCDCC 

 

5
25

4
24

3
23

2
22

1
212 icicicicicc DCDCDCDCDCC 

5
35

4
34

3
33

2
32

1
313 icicicicicc DCDCDCDCDCC 

5
45

4
44

3
43

2
42

1
414 icicicicicc DCDCDCDCDCC 

5
55

4
54

3
53

2
52

1
515 icicicicicc DCDCDCDCDCC 

Into 

  2
9

5
2

7

4
2

5

3
2

3

2
2

1

1
1  ccccc CCCCCD
ic



 the following shape functions will emerge 

  2
9

51
2

7

41
2

5

31
2

3

21
2

1

111  CCCCCN c 

  2
9

52
2

7

42
2

5

32
2

3

22
2

1

122  CCCCCN c 

  2
9

53
2

7

43
2

5

33
2

3

32
2

1

133  CCCCCN c 

  2
9

54
2

7

44
2

5

34
2

3

24
2

1

144  CCCCCN c 

  2
9

55
2

7

45
2

5

35
2

3

25
2

1

155  CCCCCN c 

And finally: 

            5
5

4
4

3
3

2
2

1
1 iccicciccicciccic DNDNDNDNDND  

 

 

 

 

 


