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Abstract

A fourth order formulation of the displacement discontinuity
method (DDM) is proposed for the crack analysis of brittle solids
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DDM such as rocks, glasses, concretes and ceramics. A fourth order
BEM boundary collocation scheme is used for the discretization of each

) boundary element (the source element). In this approach, the source
Crack Analysis

boundary element is divided into five sub-elements each recognized
by a central node where the displacement discontinuity components
are to be numerically evaluated. Three different formulating
procedures are presented and their corresponding discretization schemes are discussed. A new discretization
scheme is also proposed to use the fourth order formulation for the special crack tip elements which may be
used to increase the accuracy of the stress and displacement fields near the crack ends. Therefore, these new
crack tips discretizing schemes are also improved by using the proposed fourth order displacement
discontinuity formulation and the corresponding shape functions for a bunch of five special crack tip
elements. Some example problems in brittle fracture mechanics are solved for estimating the Mode I and
Mode Il stress intensity factors near the crack ends. These semi-analytical results are compared to those cited
in the fracture mechanics literature whereby the high accuracy of the fourth order DDM formulation is

demonstrated.

1. INTRODUCTION

A variety of analytical, semi-analytical and
numerical analyses of cracks have been
accomplished by several researchers in the field of
fracture mechanics [1-10]. The analytical
methods give exact solutions but are usually
limited to the crack problems with simple
geometry and loading conditions. The
approximate methods are either semi-analytic or
numeric. The semi-analytical or semi-numerical
methods usually give more accurate results. This
is due to existence of analytical solutions for the
problem by exact methods [11]. The approximate
solution procedures are based on the variational
methods such as minimum potential energy and
Ritz methods [12-15]. Semi-analytical procedures
such as the indirect boundary element method are
based on the semi-analytical solution of a system
of integral equations and/or a system of partial
differential integral equations on the boundary of
physical problems [16-18]. The well-known
numerical procedures used in the recent years
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includes the finite difference method (FDM), the
finite element method (FEM) [19-21], the direct
boundary element method (BEM) or the boundary
integral method (BIM) [22-25], and the dual
boundary element method (DBEM) [25-29].
These methods can be used to solve various
complex problems in elasticity and fracture
mechanics [30-34].

Recently, the boundary collocation schemes
have been used to formulate semi-analytical
methods such as the displacement discontinuity
method (DDM) which is a subdivision of the dual
indirect boundary element method (DIBEM) [35-
38].

The higher order displacement discontinuity
elements and higher order special crack tip
elements have been used to solve some fracture
mechanics problems and to increase the accuracy
of the first and second mode stress intensity
factors which are important in the study of rock
fracture mechanics [39-42]. The method was
further developed to solve the kinked and curved
crack problems [43,44]. In all of the previous
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works, a system of partial differential integral
equations was solved on the boundary of any
boundary value problem (BVP) occuring in the
field of rock fracture mechanics. The method was
also extended to solve the infinite, finite and semi-
infinite problems in elasticity and fracture
mechanics [40,45].

In the present study, a hybridized semi-
analytical method is proposed which incorporates
the higher order indirect boundary element
method for the crack analysis of the finite and
infinite plane elasticity problems. The proposed
method is verified against some well-known
fracture problems.

Also this method is compared with a third
order formulation which showed the higher
accuracy of the proposed method while using less
elements. Verification and comparison showed
the validity and applicability of the method for
both finite and infinite problems.

2. DEVELOPMENT OF THE FOURTH ORDER
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The displacement discontinuity method is an
indirect dual boundary element method
developed by Crouch [46] for solving two-
dimensional (plane strain) elasto-static problems
in solid mechanics with implications in rock
mechanics and geological engineering [16].
Displacement discontinuity components in a two-
dimensional Cartesian coordinates are defined as
the difference between shear and normal
displacements on the negative and positive sides
of a line crack, respectively (Fig. 1). A general

displacement discontinuity distribution U(&)
along a crack length 2q, is shown in Fig.1 (a).
Taking the ux and uy components of U(g) to be

constant and equal to Dxand Dy respectively, in the
interval (-a, +a), Fig. 1 (b) shows two displacement
discontinuity element surfaces; one on the
positive side of y (y=0*) and another one on the
negative side (y= 0). It may be assumed that the
displacement undergoes a constant change in
value when passing from one side of the
displacement discontinuity element to the other

DISPLACEMENT DISCONTINUITY side.  Therefore, the constant element
FORMULATION displacement discontinuities Dx and Dy can be
formulated as:
D, =u,(x0.)-u,(x0,),D, =u, (x,0_)-u,(x,0,) (1)
y y
u(e)
Dy
e A— X
F— {
-a +a D«

le——a< &< +a—|
(a)

(b)

Figure 1. a) Displacement discontinuity distribution, L](e) along a general boundary element of length 2a; b)

The constant shear and normal displacement discontinuity components DX and Dy with a positive sign

convention.

The displacements and stresses for a line crack
in an infinite body along the x-axis can be written
in terms of the harmonic functions g(x,y) and f{x,y)
in the displacement discontinuity version of the
indirect boundary element method [16].

Considering a plain strain condition, the shear
and normal displacements can be expressed as:

Uy =[2Q-v)fy =¥ 41+ [-1=-2v)g x — ¥g 4]
uy =[A-2v)f = ¥f o 1+[20-v)g y -y ]

(2)

and, the two-dimensional stress components
are:
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O =26[21 o +¥f 4y 1+2G[g , + Y7 1y ]
oy =2G[-¥f 4, 1+2G[g,y, — V9 ]
oy =2G[2,, +¥f ), 1+2G[-yg 4 ]

(3)

where G is shear modulus, v is the Poisson's
ratio.

In the fourth order formulation of the
displacement discontinuities along an ordinary
higher order boundary element of length 2a, each
boundary element is divided into five sub-
elements of lengths 2ai, 2az 2as 2as and Zas,

having the nodal displacement discontinuities Dil

, Diz, Di3, Di4 and Dis at the five nodes located at
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the center of the corresponding sub-elements,
respectively (Fig. 2).

y
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Figure 2. General discretization scheme of a fourth
order displacement discontinuity element.

Generally, the displacement discontinuity
function, (Dr(§)) can be divided into five equal sub-
elements each containing a central node for which
the nodal DD is evaluated numerically (the
opening displacement discontinuity Dy and sliding
displacement discontinuity Dx) [41].

5 .
D (£) =Y Ni(&)Di, k=xy

i=1

(4)

Where D! (i.e. Dx! and Dy1), DiZ (i.e. D2 and D)?),
Di? (i.e. D« and D)3), Di! (i.e. Dx* and Dy*) and D’
(i.e. Dx* and D)%) are the fourth order nodal
displacement discontinuities. A general fourth
order displacement discontinuity element can be
discretized as shown in Fig. 2.

The displacements and stresses for a line crack
in an infinite body along the x-axis, in terms of
single harmonic functions g(xy) and f{xy), are
given in Egs. 2 and 3 [46], in which these potential
functions for the fourth order DD element case can
be found from:

__ -1
f(x, y)_47r(1—v) 12_1 Dy F;(15)
(x )__—125 DIF.(1;) »)
gix,y _472_(1_‘/) = y I\l

in which the common function Fj, is defined as
Fj(lll I2. 13,14, 15) =

[Nj@InYx-92+y?de,

j=1,to5

(6)

where the integrals I; to [s can be deduced
from the shape functions N;(§). The shape
functions Nj(¢§) can be obtained from three
formulations: i) General sub-elements; ii)
Symmetrical sub-elements; and iii) Iso-sub-
elements or sub-elements of equal lengths.

Three types of these shape functions may be
obtained based on three discretization schemes:
(i) Discretization scheme for boundary elements
with unequal sub-elements; (ii) Discretization
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scheme for boundary elements with symmetrical
sub-elements; and (iii) Discretization scheme for
boundary elements with five equal sub-elements.

2.1. General shape function formulation (unequal
sub-elements)

Consider the discretization scheme shown in
Fig. 2 in which the third nodal displacement

discontinuity Di3 is located at the origin of the

local coordinate of the boundary element (at the
center of third sub-element). The first and second

nodal displacement discontinuities Di1 and Di2
are located on the left side and the fourth and fifth
nodal displacement discontinuities Di4 and Di5

are located on the right side of the central (or
third) sub-element, respectively.

The general sub-elements of fourth order
(considering ar#az#as#as+#as in Fig. 2) in which a is
crack half-length and a=ai+az+as+as+as can be
defined based on the displacement discontinuity
function Di(§) as

D,(&)=A+B&E+CE2+DE+EEY, i=xy (7)

This formulation can be expressed in form of
the shape function N;(§) as

5
Di(§):ZNj(§)Dij, i=xy (8)
-1

By taking the center of the displacement
discontinuity element as the origin of the local x,y
coordinate, the constant A=D:# and the shape
functions Nj(€) can be expressed as:

N;(£)=B;&+C;&%+D;& +Ej&7, 9

j=1to 5 ©)

where the constants By, B, .., Ci, Cz, ..., etc. are
given in appendix A. This formulation is somewhat
complicated; therefore, the symmetrical sub-
element formulation and the equal length sub-
element formulation can be effectively used.
However, in the case of crack tips, the general
fourth order DD formulation can be effectively
used for the crack tips.

The discretization scheme presented in Fig. 3
may be more useful, where l1=2as, [2=2a;, I3=2as=,
l4+=2a4, I5=2as5 and L=2(ai+az+as+as+as)=2a. For
ai=1/20, then az=31/40, as=1/10, a+=1/8, as=31/20.

¢

I I 1 I 1 1
T - I - [ - I - 1

¢ Is >l L e B G b b |
le L=2a 1

Figure 3. Discretization for a 4th order DD element
with sub-elements of unequal lengths.
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The fourth order shape functions N; (¢) can be And Ni(e), Nz2(¢), N3(g), N4(c) and Ns(c) are the
defined to write the fourth order variation of the displacement collection shape functions for the
shear and normal displacement discontinuities, corresponding displacement discontinuities, Dil )

Di(e) =[N1(8)]Di1+[N2(8)]Di2 + Diz, Di3, Di4 and Di5 respectively. Inserting Eq. (7)
[N3(8)]Di3 + [N4(8)]Di4 +[N5(8)]Di5, (10) into Eq. (4) and rearranging the terms, a common

special function F(x,y) as given in Equation (6)
i=XYy )
can be obtained as:

F(x y)——{JANl(g)In (x— g) +y ng]Dl [INZ(E)In[(x g) +y ng]Dz

TN3(3) infx-e)2 + yz]%dg D? +['TN4(5)In[(x—g)2 + yz]%dg]Di“ ; (11)

TNS(g) Infx—£)? + yz]%dg D3

where the common function
Fi(I, 15,15, 14,15) given in Eq. (6) can be

calculated from the integrals 1,,1,,15,1,,15as

li(xy) = J.lﬂ\/(x—cf)2 +y2d& = y(6, —6,) ~ (x—a)In(ry) + (x+ ) In(r,) - 2a

—-a

1,(X,y) = Igln JX=&)2%+y%dé = xy(6'1—6'2)+0.5(y2 —x2 +a2)ln:—1—ax
—a 2
150y = [ €2 myx- 7+ y2ds = Lo -y o, - 0,)+

(12)
3
1(Sxy2 -x3+ as)ln(rl)—l(Sxy2 -x3 —a3)ln(r2)—§ X2~ y? L&
3 3 3 3
a
L) = [ mx-0)7 + y?de =y -y2 o, - 0,)
+O.25(3x4 —6x%y2 +8a%x? +a* - y4) [In(r,) = In(r,)]
- Zax(x2 + az)[ In(r,) + In(r,)]+1.5ax® — 3axy? + 7a°x/6
. a
and 63, 02, r1, and rz are defined as: lg(X,Y) = J‘§4 In /(x _&)? + y2d¢ , indicating the
_tqt Y -a
=19 x—a)/ X+a fourth  order displacement  discontinuity
formulation can be evaluated as
n=+(x-a)’+y%and r, = /(x+a)’ w7
Is = |(x=2)*Inyz2 + y?dz =
=) (14)

X—a
For an element of length L=2a, where x*By; — 4x°By, + 6X%B,; — 4XB,, + Bys
L=li+l2+l5+ls+15 (as shown in Fig. 3), the integral,
By taking z=x-£ and dé=-dz then -a<é<a and x-
a<z<x+da.
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It should be noted that the integrals I, I2, I3 and
I+ and their derivatives are completely explained
by the second author in [39]. The shape functions

N (¢) and the integral |5 and its derivatives can

be obtained as explained in the appendices A and
B of this paper.

2.2. Symmetrical sub-elements formulation

The symmetrical sub-element formulation for
the fourth order displacement discontinuity
variation along a boundary of length 2a’ may be
performed based on the discretization shown in
Fig. 4. The displacement discontinuity function
Di’(¢) is considered as

D{(£)= A'+B'¢+C'E* +D'E +EE,
i=xy—-a'<&<a’

(15)

Ay

D/

Element

2 3

7

STV N P N i N P T
« J
N >

2a’

-a'

Figure 4. Fourth order collocation for the
symmetrical displacement discontinuity elements.

This formulation can be written in the form of
shape function N'j(€) as:

5 .
Di(¢)=2 Nj(EP!  i=xy (16)
j=1

The shape functions N'j(¢) for a symmetrical
element can be defined as:

N{(£)=B& +C/&% + D)&° + E[&*
N;(&)=—Bj& + Co&? + DyE° + Ej&*

Nj(§)=Cis" + B’ (17)
N;(£)= B¢ +Ci¢” —DyE’ + Ej&*
N;(§)=-Bi¢ +Cig* + Di* + Ei&*

where the constants B’1, B, ..., C'1, C’3, ..., etc.

are given in appendix A.
2.3. Equal sub-elements formulation

The equal sub-element formulation for the fourth
order displacement discontinuity variation along
a boundary of length 2a" may be expressed based
on the discretization shown in Fig. 5 by taking
a"=>5a; and aj =a; =a3 =a; =ag . Hence, the
displacement discontinuity function D;(§) may be
defined as

Analytical and Numerical Methods in Mining Engineering

D/(£)=A"+B"£+C"E* + D"E3 + E"EY,

H " " (18)
i=xy,—-a"<¢<a

lly

I‘ 2a;" 5 2az'f'|E 2a": T 2a," l 2as""

1€

2a"

Figure 5. Fourth order collocation for the
displacement discontinuities with equal sub-
elements.

This formulation can be written in form of the

shape function N"j(¢) as:
D/(&)=2 Nj(£)D!  i=xy (19)
j=1

The constants A”, B” C” D” and E” are
expressed as:

C'= ﬁ(— D} +16D? ~30D? +16D;' - D)
1
D - 96;2 (-pt-+2D2-2D% + D)
il
The equal sub-element formulation of

displacement discontinuity can also be used for
crack tip discretization.

2.4. Special crack tip element (fourth order
displacement discontinuity formulation)

Since the singularities of the stresses and
displacements near the crack ends may reduce
their accuracies, special crack tip elements are
used to increase the accuracy of the DDs near the
crack tips [39]. As shown in Fig. 6, the DD variation
for five nodes can be formulated using a special
crack tip element containing five nodes (or having
five special crack tip sub-elements as shown in Fig.
3).

Di¢ (£) =[N¢1(&)ID], +[N, (£)IDE +
[Nes(E)IDS +[Nc 4 (£)IDfh +
[Nes(@IDf, i=xy

(20)
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Aw

2a

Figure 6. A crack tip with five sub-elements.

Considering a crack tip element with five equal
sub-elements (a:=az=as =as=as), the shape
functions Nci(¢) to Ncs(§) can be obtained as
equations:

Analytical and Numerical Methods in Mining Engineering

1 3 5 7 9
Nc1(§):0f1§2 +C5E2 +C3182 +CjE2 +Cgié2

1 3 5 7 9
Ng2(€)=Clpé? +Cpé? +ChHE? +Chpé? +CLE2

1 3 5 7 9 21
Nea(€)=Cla? + Cip? + g2 +Clpe? vcgpez (21

1 3 5 7 9
Nc4(§)=clﬂ4§2 +C34&2 +C3E2 +C1y &2 +Cyps2

1 3 5 7 9
Nes(¢)=Cisé2 +C356 2 +Cis? +Clsl 2 +Csé 2

Constants C"13, C''23, etc. are given in appendix C.

By substituting Eq. (21) into Eq. (20) and then
substituting these equations into Eq. (4) and (5)
and following the procedures similar to those
given for the derivation of the general potential
function Fj(Il, I,,15,1,,15) in Eq. (6), the

general potential function Fc(x,y) for the crack tip
element can be expressed as:

a 1 a 1
Fe(x,y) =M(11_V)ﬂch1(§)ln[(x—§)2 E yZng’]Dﬁ: +[J.Nc2(§)|n[(>(—§)2 - yZFdélch +

ﬁNm(&)ln[(x:)Z+yzﬁdfloﬁﬁmaamkx:)2+y2]§d510£+HNcs(§)m[(xr:)?+ yz]%d%oii}

The potential function Fg;(lck) for special

crack tip elements can be written in the following
form

(22)

Fellg) = [Ng () Y(x-&)% +y?de,

j=1to 5

(23)

And from this, the following integrals are
deduced:

lea(y) = [0 (x=€)° +y°de , Tep(xy) = [E5 Iy (x=&)" + y*dé

les(y) = [€2° Y (x=8) +y7 0, Tea(xy) = [y (x=&)° +y?dé

los(oy) = [£4° Iy (x=8) +y?ae

Following the procedure explained by [39] the
complete solution of the integrals given in Egs.
(24) are presented in Appendix D. Based on the
linear elastic fracture mechanics (LEFM)
principles, the Mode I and Mode II stress intensity
factors Ki and Ki can be easily deduced [6,39]. A
crack tip element of length 2a is considered then
the stress intensity factors with respect to the
normal and shear displacement discontinuities
(assuming plane strain condition), are determined
[47] as:

(24)

1
__u (272
KI _4(1_‘/)( a] Dy(a)r

1

M (272
_4(1—v)(aJ D.(@

where, | is the shear modulus and v is Poisson’s
ratio of the brittle material.

(25)

KII

3. VERIFICATION OF THE FOURTH ORDER
DISPLACEMENT DISCONTINUITY
FORMULATION

30
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Some example problems such as center slant
cracks, curved cracks, and double-edge cracks are
being used to verify the fourth order displacement
discontinuity formulations presented in this
research. The general curved cracks can be
considered as elliptical cracks with different ratios
of the minor axis (c) to the major axis (b) (i.e. ¢/b
ratio).

3.1. Center slant crack (c/b=0) under far field
tension

The center slant crack under far field tension is
shown in Fig. 7. The slant angle = 45° and half
crack length a=1m are assumed in the analysis. A
crack tip element length to half crack length ratio
I/a= 0.1 has been used for the numerical solution
of the problem. The analytical solution of the first
and second mode SIFs, K; and K, for the center
slant crack problem are given as [48,49]:

K, =oyzasin? g
(26)
K, =o4/rasin g cosp

— 2a
- —

T =0x
—_—
—_—
e
—_—
- —_—
—

——

Figure 7. Center slant crack under far field
tension.

As it can be seen in Fig. 8 the error in SIF
calculation is less than 0.008% for all points
except for K in 3=75° which is less that 0.014%.
The proposed formulation manages to offer high-
precision predictions for all line cracks. In the next
section, the accuracy of the formulation in dealing
with more complicated cracks, i.e. curved cracks,
will be investigated.

0.014

0.012

KT
0.01 KIT
§ 0.008
5 0.006
0.004
0.002
0
0 15 30 45 60 75 %

A

Figure 8. Percentage error in SIFs prediction
for central slant cracks using fourth order
DDM.
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3.2. Circular crack (c/b=1)

Circular (c/b=1) or curved (0<c/b<1) cracks
may occur in cracked bodies [39,43,47]. The
analytical values of K;and Ki for a general circular
crack of Fig. 9 may be expressed as [50]:

K, =oab _cos(@/4)
1+sin?(a/4)
K. = oz Sn@/4) (27)
! 1+sin?(a/4)
Pttt
_ Crack —
- | propagation \ —>
-
- . ﬁw . _:_
- —_—
- —

Vb b

Figure 9. Curved crack in an infinite body
under biaxial tension.

Fig. 10 shows the percentage error of
numerical values of stress intensity factors, K; and
Ku, for different a angles. Fig. 11 shows analytical
and numerical values for different a angles. As it
can be seen the new formulation produces better
results as a grows.

60

50

&

Error(%)
= W @
o =) (=)

o

15 45 75 105 135 165
a(®)

Figure 10. Percentage error in SIFs
predictions of various circular cracks.

3.3. Elliptical cracks

The line and circular cracks set two limits for
curved cracks defined by the ratio of ellipsis
radiuses shown in Fig. 12. Normalized values of
SIFs for different curvature ratios from 0 (line
crack) to 1 (circular crack) are also presented in
Fig. 12.
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20
18
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KT Apalytical
KIT Analytical
KT Numerical
KII Numerical)

K, K;; (MPavm)
=B R

2 N s & @

15 30 45 60 75 90 105 120 135 150 165 180

a®

Figure 11. Analytical and numerical values of
SIFs for various circular cracks.

1.2

Normalized KI

[

Normalized KII|

Normalized SIF
e © o 2
=~ - (=2 =]

=]

b

Figure 12. Normalized stress intensity factors
for different ellipsis radiuses (c/b ratios) for
a=90.

Fig. 13 demonstrates the initiation angle for
the same cracks presented in Fig. 12. For c/b=0
(i.e. a line crack) the crack has obviously
propagated in its original plane, while for c¢/b=1
(i.e. circular crack) initiation occurs at about 35°
(as predicted from analytical equations).

S0
45
40

35
30

=35
20
15

10

5

0
0 0.2 0.4 0.6 0.8 1

c/b

Figure 13. Crack propagation angle for
different ellipsis radiuses (c/b ratios) for
a=90.

3.4. Double- edge cracks in a finite plane
For the problem shown in Fig. 14, let the width
of the plate, W=1 m, b/W = 0.1, the normal stress,

o =10MPaan( the Poisson’s ratioV=0.2, then
the analytical normalized value of

K, /(oy/zb) =1.1215 [6].
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The fourth order formulation of displacement
discontinuity method is being used to find the

normalized values of K, /(o/zb) considering the

effects of the number of elements along the crack
in a double edge crack problem (Fig. 15).

A v
Oy

Pt

Rock

Double Edge Crack

b

—_—2W

S—— ——
b b
W X
O

v

b

Figure 14. A double edge crack in a finite plate

with W=1 m.

Mi —o—Analytical

—@—Fourth
order DDM

p=10

1.15
1.14

123

142

111

12 |
0 5 10 15 20

Normalized stress intensity factor, KI

Number of element

Figure 15. The analytical and numerical values
of the normalized Mode I stress intensity

factor, K, /(o/7zb), for the double edge crack,
using different number of elements along the
crack and 1/b=0.1

Let the ratio of crack tip element length, /, to
crack length, b, change as

% =0.05,0.1,0.15,0.2,0.25,0.3,0.35and 0.4, and

taking the number of elements along the
boundaries of the problem as 60 and those along
the crack as 10, the computed results for

K, /(oy/zb) with  the

corresponding analytical value (Fig. 16).

are compared
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12

116

1.08 == Analytical
—=@—Fourth

1.04 order DDM

0 0.1 0.2 0.3 0.4 0.5

Normalized stress intensity factor, KI

I'bratio

Fig. 16. The analytical and numerical values of
the normalized Mode I stress intensity factor,

K, /(o4 zb), for the double edge crack using
different crack tip length to crack length ratios
(different I/b ratios).

Fig. 17 shows the effects of different crack
length to width ratios (different b/w ratios) on the
value of K, /(o\/zb) for a double edge crack

problem. The normalized SIF is evaluated using
the third order and the proposed fourth order
elements.

40

25 =0= 4th Order

o
S

=0=3rd Order

KI Error (%)

0 0.1 0.2 0.3 0.4 0.5
b/W Ratio

Fig. 17. The error in estimating numerical
values of the normalized Mode I stress

intensity factor, K, /(o,/7zb), for the double

edge crack using different crack length to
width ratios (different b/w ratios) for the third
and the fourth order elements.

As it can be seen, the proposed higher order
element can achieve a higher accuracy in
comparison to the previous used third order
elements in estimating the stress intensity factor.
The error reaches values of around 36% and 26%
for the third and the fourth order elements
respectively for b/w=0.4. The high values of error
are due to boundary effect. Increasing b/w ratio
decreases the distance between crack tips and
distance of crack tips from the boundaries.

4. CONCLUSIONS

The fourth order formulation of displacement
discontinuity for the crack analysis was presented
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in this paper. Some special discretization schemes
were developed to make the formulation more
robust and concise. The details of the formulations
with different integrals and derivatives required
in the fourth order solution of displacement
discontinuities along each boundary element were
given in the text and relevant appendices. It has
been shown that the special crack tip elements can
also be formulated based on the fourth order
displacement discontinuity formulation
presented in this research. Several problems were
selected as instances from the fracture mechanics
literature to verify the numerical results obtained
by the present formulation.

The special singular integrals derived in the
solution of stress and displacement fields near the
crack tips while using the semi-analytical indirect
boundary element method. The new formulations
and the corresponding derivatives were given in
detail in the text and in the appendices (A, B and
C) of this paper. This method is a hybridized semi-
analytical method which gives a general solution
of the displacement and stress fields near the
crack ends based on which Mode I and Mode II
(mixed mode) stress intensity factors (i.e.
K, and K, or their normalized forms

K, /(cy/7b), and K, /(c\/zb), respectively), for

different example problems of fracture mechanics,
can be obtained with a very high accuracy (less
than one percent errors in most cases when the
higher order elements and special crack tip
elements are being used simultaneously). The
results obtained by using the 4t order
formulations of displacement discontinuity were
compared with the corresponding results
obtained by using the analytical methods cited in
the literature. These comparisons validated the
higher accuracy of the present formulation in the
crack analysis of brittle solids. The proposed
fourth order elements were also compared with
the third order elements already available. The
comparison showed the higher accuracy of the
fourth order elements. The proposed fourth order
elements may be used to solve fracture and elastic
problems with a higher accuracy.
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APPENDIX A

A.1. Constants for general shape functions:
1
B, = ﬁ [1+C,(BA, )+ Dy(BA;)+ Ey(BA, )]

where BA1 to BA+ are:

BA =S,-S;, BA, =S2-S2, BA,=S3-57,
BA, =8y - 53

and Sz and Sz:

Slzal+232 +a3, Szzaz +a3

1
C = C_Al [CAz -D; (CAS )+ E, (CA4 )]
in which:
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2 2
cA, - SZ+52 - S,
BA BA
CA3_%+SE CA4_—BA4 Sy
BA BA
where Ss=az+as+
D, = DA, + El(DA’S )]
in which:
B
DA, = BA 2% -5,
A1 CA1 2| BA
S CA
oA, = 52 1% (g, s, (8 Ai»}
2 BA [ CA,

CA, ( BA
DA, =-S,|S5 + —4| —2 -5,
CA, | BA

and E; is:

L NS,

EAs = EAo(CA )+ (52 - 53)
EA, = EAy(CA,)+(5¢ —s?)
where Ss=asz+2as+as and EAo is:
BA)(S4 —Ss)  Si-S&
+
(BAJCA) A
For Bz, C2, Dzand Ez:

B, =§[CZ<BA2>+ D,(BA)+ E,(BA,)-1]

EA, =

c, :i["’*z —D,(CA)-E, (CA, )]
D, =~ g DA +E-(OA )]
where

__So [, Ay,
DA, - - BA&[ o e, sm»}
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EA DA,

EA; S“B_ > ~CA,(EAy)

For B3 through E3:

B, = 5 Co(8%)+ Ds(B)+ 5 (8]
C; = —CLA1[1+ D3(CA3) + E5(CA, )]

D; = [L- DA+ E4(DAg)]

1

S
DA =——2 | BA2 _g
CA, | BA,

£o L e B
EA, DA,

B4,(5, -5) , 87 -2
(BANCA)  CA
and for B4 to E4 :

EA, =

B, = i[@(BAz)ﬂL D,(BA;)+E4(BA )]

C, = CLAl[l- D,(CA;)- E4(CA, )]

D, = i[l— DA, + E3(DAs )]
E, :§{1+ EA +%§A€J}

BA(S,-S;)  SZ-S7
S5 Ba)ca) A

And finally for B5 to E5:

B, :i[c5<sA2)+ D5(BA)+ Es(BA, )]

Cs= _C_ [Ds (CA;)+Es(CA, )]

o, EslDA) 1

DA, ~ ° EA

A.2. Constants for symmetrical shape
functions:

Let S =a; +2a, +azand S, =a; + a3, then:

36



A Fourth Order Formulation of DDM for ...

872 872
BJ[‘ - ’ 122 2 é = ’ !; 2
251(s;2 - 54 255(s12 - 54
o =SE_ -s8f ,_ s +s2)
PUasP(sPosg) P 2sp(sP-sy) T sy
1 1
D, = , D) =
tT2sI(sE-s2) Tt 2s22(s)2 - 5y)
. 1 . 1 , 1
E‘za%g?-%ﬂ'Ez_zgdqz-gﬂ‘Es_s”
APPENDIX B

The required partial differential equations for Is
are as follows:

I5,X = 4X3Bll + X4Bll,X _12)(2812 - 4XSBlZ,X

+12XBy; +6X°Byy , — 4By, —4xByy, + Bys
lsy =4X°Byy, +XByy —12X°Byy, —4x°By,
+12XByy , +6X By — 4By, —4XByy o + Bag oy

4 3 2
|5,yy =X Bll,yy —4x Blz,yy +6X BZl,yy —4x822,yy + Bzgvyy

Iy =4X°Byyyy +X*Byy ) —12X%By, , —4X°By,

+12XByy yy +6X*Byy gy — 4By — 4XBas gy + Bogy
4 3 2
I5’yyy =X Bllyyy —4x BlZ,yyy +6X BZl,yyy —4XBZZ’Wy + BZB,yyy

Where constant integrals B11 and its derivatives
are:

X+a
By, = '[In V22 +y2dz=y(6,-6,)-(x—-a)inr, +(x+a)inr, —2a

X—a

6, = Arc tan(i), 6, = Arc tan(i)
X+a

n=vy(x-a)l+y% r,=y(x+a)+y?

Let

I r}

(x-a)® —y?

B11 0 =_Bll,xyy = 2 2
n I

(x+a)? +y?

The integral B12 and its derivatives:
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X+a

By, = jzln V22 +y?dz :—%[rl2 Inr,—rZln rz]—ax:
X—-a

2 2 2
SX Y *8 Gy —inry)+ax(ing +Inry ) - ax

2 2 2
X“-y“+a
Let By =+ and Ly =Inr, —Inr, then

the derivation Lxx, Lxy, Lxxy, Lxyyetc. are:

ST

n r; n n
(x—a)?-y? (x+a)’-y?
Ly = 4 - 4
n I
2 2 2 2
Lwy =_2y{3(x—a)6 -y°, 3(x+a)6 —y }
n r
Loy = _2|:(x—a)(rlz _4y2)+ (x+a)(r22 _4y2)}
' n I

And the derivation of B1zx Bizy, B12xy, Bizyy, etc, can
be defined as

BlZ,X :_XB].].,X + Blo Bll,yy + aLX + aXLx'X —a
Bioy =YBiix —BigBiiy +axLy

Bioyy =—XBi1xy —YBiry +BioBiiyy —alyy —axbky

Blz,yy = Bll,xx + 2y|311,xy +Byg Blz,xyy + axLX’W

Blz,xyy :’XBleyyy - Bll,yy - 2yBlLyyy + By Bll'ym, + aLnyy + axLvayy

The integral B21 and its derivatives

B,, = Jz In zz+y2dz=—;[(x—a)3lnr1—(x+a)3Inrz]
1 2 2
_§y3(01—92)—§a(x2—yz)—§a3

This integral can be described as:
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2 2 2

X 5 1 3 P 2 (2 2 @
Byy=—Xx —+a -= +a X +— L, ——a X -y +—
21 [3 jBu,x 3y By [ 3] x 73 [ y 3]

(2 2) X 1,
BZl,x:_XX +a Bn,x+ ?"’a X Bll,yy —gy Bll’Xy

2
+ 2axL, + a[x2 + %JLX,X - %ax

x* 2 13
Bory ==X —+a” By —— Y By
3 3
2

a 4
—y*Byy, + a{x2 +?JLX'y 3y

2 .2 x* 2 13
BZl,xy :—x(x +a )Bll,xy + ?+a X Bll,xxy —gy Bll,xyy

2
2 2, a
— Y By +2axL, , + a[x + 3JLx,xy

2
X 1
By = _X(? + azJBll,xyy ~3 yBBll,yyy - 2)/ZBn,y
2
2 a 4
—2yByy + a{x + ?JLX'W + ga
APPENDIX C
Constants defining crack tip shape functions:

Constants for Nci:

cr _Cuu CuCy 4 (C15 _ Cl4C45J "

11— 51/
C40 C44 C44
C,C C,,C

Cgl — CZ]_ _ él 41 [C 24~ 45 JC "
44 44
Cy,C CqC

Cy =Cyy - 28 [c : 45]%"
44 44

Constants for N¢z:

c CuC C..C
S Y N A

Cuo Cua Cu
c,,C c,,C
é’z — C22 _ 2C4 42 + (CZS _ 24~ 45 Jcll
44 44
C,C C,,C
Cé!z — C32 _ ?é 42 (C 34~45 ch ,
44 44
C C C
Ci :_i_icgz, 52 = 22
Co Cu 1-Cspo

Constants for Nc¢s:
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44
y C,.C C,,C y
C23=Cy3— Zé £ (C 2(4:1 £ Jcs
44 44
C.,C C.,C
Cl =Cyy - 35 43 (03 34C 45 ch ,
44 44
C
503
Cis __Cui_Cu CL, Cg3 =
Cpo Cu 1_C500

C..C C.C
cl, = 1440 +(C15— 14 45}:%,4'

ﬁc44 C44

Cg4 — C24C40 [CZS _ C24C45 qu
ﬁC44 C44

Cé’4 _ C34040 (C3 CB4C45 ch4
ﬁc44 44

Cz,1'4 — C40 C45 c! Cg4 — C504

= T~ ‘54
ﬁCM om 1-Cspo
Constants for Ncs:
”n C C "
15 :(Cﬁ - lé 2 ]Cssi
a4
C,,C
Cé's =[C25 -2 ]Cé'5:
44
C,,C
C§5 :(Css - S Jcé's:
a4
C C
Cz5 = = C§5 C§'5 = 1 ?5 ’
44 — L500
Cg5 — C505
1-Cs
where

C505 = (931)79/2

APPENDIX D

U (E)=Cio& 2 4 Cpoe 4+ Cou2?? +Cuee/? 1 Cyr 2
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Dic (€)= Nac (£)Dic + N (£)DiG +Nag (§)Dic
+Nyo (€)Dic + N (£)D5c

Dic(al) = Clcal% + Czca1% + C3Ca1% +
C4cal% + C5cal%

Dic (231 +a2)= Cyc (2a1 +a; )% +Cy (231 +a; )% +
Csc (231 +a; )% +Cy (2a1 +a; )% +Cs (Zal +a; )%

Coe (2a1 +2a, +a, )/ 2 +Cy (28 +2a, +ay )V
+Cy (22, +2a, +a, )4 +Cq, (22, +a, )A

Dy (2a, +2a, +2a; +a,)=Cy, (2a, + 2a, +2a, +a,) 2
+Cy (28, +2a, + 28, +a, )% +Cy (23, +2a, +2a, +a, )%

1+ Cue(2a, +2a, + 285 +2,)/2 +Cy, (20, + 20, + 285 +,) 2

Dy (2a, +2a, +2a; +2a, +a5)=Cy. (2a, +2a, +2a, +2a, + as)% +
Cy (28, +2a, +2a, +2a, +ag )% +Cyq (22, +2a, +2a; +2a, +a5 )%
+Cy (22, +2a, +2a, +2a, +ag )% +Cq(2a; +2a, +2a; +2a, +ag )%
Assuming equal sub-elements ai=az=asz=as=as,
this one may be obtained.

D! (a1)=Clca1}/2 +CZCa1% +C3Ca1% +C4Ca1% +CSCa1%
D2 (3a,)=Cy,(38,)%2 +C 0 (38,)%2 + Cy (32,)72 +
Cuc(38,)/2 +Co (32,)72
D® (53, )= Cy. (58,2 + C (58,72 +Cyy (52, )72 +
c4c (58,)"2 +Cq, (52, )72
)=Cio(72,)72 +Coe (72,72 +Cy. (72,)72 +
)2 +Cy (72,)72
)=Cyc (92, )72 +Cye (92, )72 +Cy (93,72 +
Cuc (9al )2 +Ce. (93, )72
Let sic=ai, sz2c=2ai+az,  s3c=2(ai+az)+as,

sac=2(ai1+az+asz)+as+ and Ssc=2(ai+az+as+as)+as,
then

C4c (7a1

3 5
D?C (Slc): Clcslc% +Cchch +C3cslcé +
C4cslc% +CScslc%

Soc —S
3031 — 2c 3c
2 2
S1c (Slc — Sz )(SSC — S1cS2¢ ~ S3cS1c — SSCSZC)
Y2622
_ Szc T S1c"S%¢ 1

SC3p = SCa3 = 4

S5¢ (51c — Sy )5030 $52SC30

)
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2 2 3

sc S3c51c +S1c52¢S3¢ +S3c52c S1cS2¢ ~S2cS1c ~S3c

34 =
SCas = ——— (S3.S5. +525,.54. +Syc S2.Sac + 558

35 3clc 1c22c3c 1C22c 3¢ 2c°3c

30

3 2.2 3 4

—S1¢S2¢ —S1cSo¢ —S1c52¢ — Sac)
_ —Sy¢

SCyy = +S1c52¢5C315

Slc2 (Slc —S3c )

b

Sclz = Lc

S1c —

+81S¢SC, SC13 =S1cS2cSC33»
2c

2 2
SC14 =S1cS9cSC3q + S1cSo¢ +S1cS7¢ ,

SC15 = S1655c5Ca5 + SisSac +S51655c + S1eSae

1

\/g(slc - SZC)
-1

\/g(slc —Sac )

SCo3 = _(slc +Sy¢ )3033

2
SCo4 = —S1cSc =S¢

SCyy = - (Slc + Sy )3031 )

SCypp = - (Slc + S )5032 ’

- (Slc +Sy )SCSA ’

- (Slc + Sy )5035

2
—S1c

2 3
—S1682¢ — Sy

3 2
SCo5 =51 =S¢5y

2 3
SCyp =SCyy +8Cp Sy +5C34Syc +Sy¢

2
—SC11 —SCp1S4c —SC3154¢ )
SCyy = =Cy,
SCao
—SCyy —SCypSa. —SCayS2
12 2284¢ 3254¢ '
SCyp = =Cl2,
SCa0
2
sc,. = 013 ~SC2354c ~SCa884c _
3= =L
SC40
1 ,
SCyy =——=—=—=Cuy
V'S4 SCyqp
SCye — SCoeSse — SCacS2. — S
s, = 15 = Co554c = Co554c ~Sac _
45 = - =0y
40

Ci=sc, + SC14SCyy C/, =5SCy, +5C,SCyy ,
Cl;=5sC;+ SC14SCy3 C,= $CL4SCs

C,; =SCj; +SC,,SC,¢

C,, =SC,, + SC24SCs1 | C), =sC,, + $C54SCy

Co3 =5Cg3 +5C24SC43, Co4 =5C245Cus,
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14
czs = SCy5 + SCy,SCys

’ ’
C;, =sCy + sc34sc41' C,, =SC,, +SCy,SC,, )

Caya = SC33 + SC34SCy3 , Cé4 = SC34SCyy, ,
Cls =SCys + SC34SCys

! ' 2 ~1 2 4
Csp =Cis +55cC 5 +55:Cg5 +55:5C 45 + S

' ' 1 <2 3
—Cyqy —C21S5c —Cg1S5; — SC41S5c

C =
51 ]
Cso
Cr C! Cr 2 3
C. —_~12~ 2255¢c —L32S5c —SC 4555
52 =
Cso
Cr Cr Cr 2 3
C..o_ 18~ 2355c — L3355 —SC4355¢
53 = )
Cso
—Cl, —CluSe. —ClaS2 —5C 488
C. = 14~ %2455 ~ 3455 4455¢
54 =
Cso
1
Ce =

C11=Ci;1 + C::[5(:51’ Ci1, =Ci; +CisCs ,
Ci3 =Ci3+Ci5Cs3, Cyy =Ci14 +CisCsy,
Ci5 = C1sCss

Cp =Ch + Cé5C51’ Co =C3 +C35Ch2
Co3 =Co3 + Céscss' Caq =C3 +C3Csy ,
Cas = C35Css

Ca31 =Cg3 +C35Cs; , Caz =Cz +C35Csp ,

— 4 ’ _ ’ ’
Ca3 =C33 +C35Css , Cgy =C3y + C35054,
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Cas = C35Css

Cu1 =5C4y +5C45Cs; , Cyz2 =8Cyp +5C45Cs ,
Cy3 =5C43 +5C45Cs3 , Cuq =SCyg + 3045054,
Cus =5€45Cs5

Substituting following equations

Cye =Cy3Dj¢ +CyyDf +Cy3Di +Cyy Dt +Cy5D3

Cye =Co1Di; +Cp,D +CyaDi +Cpy Dig +CsDR

Cae =Cq1Dy +C3yD +Cy3D8 +CyyDig +Cy5Df

Cae =CaDi; +C4;Df +CyaDR +CyyDig +CysDR

Cs =Cs;Dj; +CsyDit +Cs3Dit +CsDig +Cos D3
Into

D! (.»;):clcg}/2 + 0205% + C3C§% + C4C§% + CSCg%
the following shape functions will emerge

Ny (&)= cng% + 0215% + c3l§% + c41§% + 0515%
N (5):0125}/2 + szg% + C32§% + c42<§% + cszg%
N (&)= 0135% + Cszg% + C33§% + 0435% + c53§%
N e (g)zcmg}/z + 0245% + 0345% + c44§% + 0545%
N, (.»;):clsg}/2 + czsg% + 0355% + 0455% + 0555%
And finally:

Dic (5) = Nlc (§)Dllc + N2c (é:)Dlzc + N3c (§)D|30 + N4c (‘”:E)Dlzclz + N5c (f)DlE(



