حل دستگاه معادلات چندجملهای فازی با استفاده از روش وو | ||
| پژوهش های نظری و کاربردی هوش ماشینی | ||
| دوره 2، شماره 1، شهریور 1403، صفحه 155-170 اصل مقاله (807.62 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/abmir.2025.22565.1085 | ||
| نویسنده | ||
| حامد فراهانی* | ||
| دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران | ||
| چکیده | ||
| در این مقاله، روشی مبتنی بر الگوریتم وو برای تعیین راهحلهای واقعی دستگاههای معادلات چندجملهای فازی معرفی میشود. در ابتدا، -rبرشهای یک دستگاه معادلات چندجملهای فازی محاسبه شده و نمایش پارامتری برای این سیستم استخراج میگردد. سپس، الگوریتم وو به کار گرفته میشود تا نمایش پارامتری دستگاه معادلات چندجملهای فازی را به مجموعهای متناهی از مجموعههای مشخصه تبدیل کند. ارتباط قویای میان راهحلهای این مجموعههای مشخصه و راهحلهای دستگاهه چندجملهای وجود دارد. الگوریتم وو بهطور مؤثر دستگاههای چندجملهای را با ایجاد مجموعههای مشخصه به سیستمهای مثلثی تبدیل میکند، که این امر حل آنها را ساده و کارآمد میسازد. این روش نه تنها روابط میان متغیرها را روشن میکند، بلکه کارایی محاسباتی در حل معادلات چندجملهای را نیز افزایش میدهد. مزیت بزرگ روش پیشنهادی در این است که تمامی جوابهای فازی مسئله را بهطور همزمان به دست میآورد. در نهایت، مثالهای محاسباتی عملی متنوعی برای نشان دادن اثربخشی این روش ارائه شده است. | ||
| کلیدواژهها | ||
| مجموعههای مشخصه؛ سیستمهای مثلثی؛ جوابهای دقیق؛ تحلیل فازی؛ روشهای جبری | ||
| عنوان مقاله [English] | ||
| Solving Fuzzy Polynomial Equations Systems Using Wu’s Method | ||
| نویسندگان [English] | ||
| Hamed Farahani | ||
| Chabahar Maritime University, Chabahar, Iran | ||
| چکیده [English] | ||
| In this paper, we introduce a method grounded in Wu’s algorithm for determining real solutions of systems of fuzzy polynomial equations. We initially calculate the r-cuts of a fuzzy polynomial equations system and derive a parametric representation for the system. Wu’s algorithm is subsequently utilized to convert the parametric representation of the FPES into a finite set of characteristic sets. There is a strong connection between the solutions of these characteristic sets and the solutions of the polynomial system. Wu’s algorithm effectively transforms polynomial systems into triangular systems through the creation of characteristic sets, enabling straightforward and efficient solutions. This method not only clarifies the relationships between variables but also enhances computational efficiency in solving polynomial equations. The big advantage of the proposed method lies in the fact that it attains all fuzzy solutions of problem at a time. Finally, various practical computational examples are provided to illustrate the method’s effectiveness. | ||
| کلیدواژهها [English] | ||
| Characteristic sets, Triangular systems, Exact solutions, Fuzzy analysis, Algebraic methods | ||
| مراجع | ||
|
[1] Abbasbandy, S., Asady, B., Newton’s method for solving fuzzy nonlinear equations. Applied Mathematics and Computation 159, 2 (2004), 349–356. [2] Abbasbandy, S., Jafarian, A., Steepest descent method for solving fuzzy nonlinear equations. Applied Mathematics and Computation 174, 1 (2006), 669–675. [3] Abbasbandy, S., Otadi, M., Mosleh, M., Numerical solution of a system of fuzzy polynomials by fuzzy neural network. Inf. Sci. 178, 8 (2008), 1948–1960. [4] Abbasi Molai, A., Basiri, A., Rahmany, S., Resolution of a system of fuzzy polynomial equations using the grobner basis. Inf. Sci. 220 (Jan. 2013), 541–558. [5] Allahviranloo, T., Mikaeilvand, N., Kiani, N. A., Shabestari, R. M., Signed decomposition of linear systems. An International journal of Applications and Applied Mathematics, 3 (2008), 77–88. [6] Boroujeni, M., Basiri, A., Rahmany, S., Valibouse, A., Finding solutions of fuzzy polynomial [7] equations systems by an Algebraic method. Journal of Intelligent & Fuzzy Systems, 30 (2016), 791–800. [8] Buckley, J., Qu, Y., Solving linear and quadratic fuzzy equations. Fuzzy Sets and Systems, 35 (1990), 43–59. [9] Buckley, J. J., Qu, Y., Solving fuzzy equations: a new solution concept. Fuzzy Sets and Systems, 39 (1991), 291–301. [10] Buckley, J. J., Qu, Y., Solving systems of linear fuzzy equations. Fuzzy Sets and Systems, 43 (1991), 33–43. [11] Chou, S., Mechanical Geometry Theorem Proving. Mathematics and Its Applications. Springer, 1987. [12] Chou, S., Gao, X., Ritt wu’s decomposition algorithm and geometry theorem proving. Tech. rep., Austin, TX, USA, 1990. [13] Cox, D., Little, J., O’Shea, D., Ideal, Varieties, and Algorithms: An introduction to computational algebra geometry and commutative algebra, third edition. Springer-Varlag, New York, 2007. [14] Farahani, H., Rahmany, S., Basiri, A., Abbasi Molai, A., Resolution of a system of fuzzy polynomial equations using eigenvalue method. Soft Computing, 19, (2015), 283–291. [15] Kajani, M. T., Asady, B., Hadi-Vencheh, A., An iterative method for solving dual fuzzy nonlinear equations. Applied Mathematics and Computation, 167, 1 (2005), 316–323. [16] Jin, M., Li, X., Wang, D., A new algorithmic scheme for computing characteristic sets. Journal of Symbolic Computation, 50, (2013), 431–449. [17] Klir, G. J., and Yuan, B., Fuzzy Ssts and Fuzzy Logic, Theory and Applications. Prentice Hall P T R, 1995. [18] Zadeh, L., The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8, (1975), 199–249. [19] Muzzioli, S., Reynaerts, H., The solution of fuzzy linear systems by non-linear programming: a financial application. European Journal of Operational Research, 177 (2007), 1218–1231. [20] Ritt, J.F., Differential Algebra, American Mathematical Society, New York, 1950. [21] Tacu, A., Aluja, J. G., Teodorescu, H., Fuzzy systems in economy and engineering. Hourse of The Romanian Acad., 1994. [22] Vroman, A., Deschrijver, G., Kerre, E. E., Solving systems of linear fuzzy equations by parametric functions. IEEE Transactions on Fuzzy Systems, 15 (2007), 370–384. [23] Vroman, A., Deschrijver, G., Kerre, E. E., Solving systems of linear fuzzy equations by parametric functions- an improved algorithm. Fuzzy Sets and Systems, 158 (2007), 1515–1534. [24] Wu, W.-T., On the Decision Problem and the Mechanical Theorem Proving and the Mechanization of Theorem in Elementary Geometry. Scientia Sinica, 21 (1978), 159–172. [25] Wu, W.-T., Basic Principles of Mechanical Theorem Proving in Geometrics Journal of Systems Science and Mathematical Sciences, (1984). [26] Wu, W.-T., Mathematics Mechanization: Mechanical Geometry Theorem-Proving, Mechanical Geometry Problem-Solving and Polynomial Equations-Solving. Mathematics and Its Applications. Springer, 2001. [27] Wu, W.-T., Gao, X.-S., Automated reasoning and equation solving with the characteristic set method. Journal of Computer Science and Technology, 21 (5) (2006), 756–764. [28] Wu, W.-T., Gao, X.-S Mathematics mechanization and applications after thirty years. Frontiers of Computer Science in China, 1 (1) (2007), 1–8. | ||
|
آمار تعداد مشاهده مقاله: 144 تعداد دریافت فایل اصل مقاله: 154 |
||
