رویکردی نوین در کاهش ابعاد گراف مبتنی بر یادگیری عمیق با استفاده از منطق فازی و گامهای تصادفی | ||
| پژوهش های نظری و کاربردی هوش ماشینی | ||
| مقاله 10، دوره 2، شماره 1، شهریور 1403، صفحه 131-141 اصل مقاله (959.34 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/abmir.2025.22416.1075 | ||
| نویسندگان | ||
| محمد مهدی کیخا* 1؛ سامان براهویی2 | ||
| 1استادیار، گروه علوم کامپیوتر، دانشکده ریاضی آمار و علوم کامپیوتر، دانشگاه سیستان و بلوچستان, زاهدان، ایران | ||
| 2گروه علوم کامپیوتر، دانشکده ریاضی،آماروعلوم کامپیوتر، دانشگاه سیستان و بلوچستان زاهدان، ایران | ||
| چکیده | ||
| ساختارهای گراف نقشی کلیدی در مدلسازی روابط در زمینههای مختلف، از جمله شبکههای اجتماعی، پایگاههای دانش و شبکههای زیستی، دارند. با افزایش ابعاد این شبکهها، کارایی روشهای تحلیل مبتنی بر مجاورت کاهش مییابد و استفاده از تکنیکهای تعبیهگذاری گراف بهمنظور کاهش ابعاد و حفظ ساختار ضروری میشود. این فرآیند به بهبود عملکرد در کاربردهایی مانند دستهبندی گرهها و پیشبینی پیوندها کمک میکند. اما روشهای سنتی تعبیهگذاری گراف در ثبت روابط غیرخطی و مقیاسپذیری برای شبکههای بزرگ با محدودیتهایی مواجه هستند. همچنین، در دادههای دنیای واقعی، ویژگیهای اولیه و دقیق گرهها که برای این الگوریتمها ضروری است، همیشه در دسترس نیست. در این مقاله، چارچوب جدیدی به نام FuzzyRandomNet ارائه شده است که با ترکیب منطق فازی و گام های تصادفی، این چالشها را برطرف میسازد. FuzzyRandomNet با افزودن لایههای غیرخطی و بهینهسازی ویژگیهای گره، راهحلهایی کارآمدتر و مقیاسپذیرتر برای یادگیری گرافها ارائه میدهد. نتایج ارزیابی روش پیشنهادی در مقایسه با تکنیکهای موجود بر روی مجموعه داده های استاندارد نشان می دهد که این روش عملکرد بهتری در دستهبندی گرهها و پیشبینی پیوندها داشته و دقت و انعطافپذیری بالاتری در شبکههای بزرگ و پیچیده از خود نشان میدهد | ||
| کلیدواژهها | ||
| کاهش ابعاد گراف؛ یادگیری عمیق؛ منطق فازی؛ گامهای تصادفی؛ تعبیهگذاری گراف | ||
| عنوان مقاله [English] | ||
| A Novel Deep Learning-Based Approach for Graph Dimensionality Reduction by Using Fuzzy Logic and Random Walks | ||
| نویسندگان [English] | ||
| Mohammad Mehdi Keikha1؛ Saman Barahouei2 | ||
| 1Assistant Professor, Computer Science Department, Faculty of Mathematics, Statisrics and Computer Science, University of Sistan and Baluchestan, Zahedan, Iran | ||
| 2Computer Science Department, Faculty of Mathematics, Statistics, and Computer Science, University of Sistan and Baluchestan, Zahedan, Iran | ||
| چکیده [English] | ||
| Graph structures play a vital role in modeling relationships across various domains, including social networks, knowledge bases, and biological networks. As the dimensions of these networks grow, the efficiency of proximity-based analysis methods declines, necessitating the use of graph embedding techniques to reduce dimensionality while preserving the underlying structure. This process enhances performance in applications such as node classification and link prediction. However, traditional graph embedding methods face challenges with capturing non-linear relationships and scaling to large networks. Additionally, in real-world networks, the essential initial and precise node features which are required by these algorithms are not always available. In this paper, we propose a novel framework called FuzzyRandomNet, which addresses these challenges by integrating fuzzy logic with random walks. FuzzyRandomNet introduces non-linear layers and optimizes node features to provide more efficient and scalable solutions for graph representation learning. The evaluation of the proposed method against existing techniques on standard datasets demonstrates superior performance in node classification and link prediction, exhibiting higher accuracy and flexibility in large and complex networks. | ||
| کلیدواژهها [English] | ||
| Graph Dimensionality Reduction, Deep Learning, Fuzzy Logic, Random Walks, Graph Embedding | ||
| مراجع | ||
|
[1] J. Smith and R. Johnson, "Advances in graph embedding techniques for efficient analysis," Journal of Machine Learning Research, vol. 25, no. 3, pp. 45–60, 2024 [2] L. Chen and S. Kumar, "Dimensionality reduction in graphs: Methods and applications," IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 5, pp. 1012–1025, 2024. [3] Wang, Y., & Li, J. (2023). Graph embedding techniques for complex network analysis: A comprehensive review. IEEE Transactions on Neural Networks and Learning Systems, 34(1), 15-32. [4] Zhang, H., & Chen, L. (2023). Advancements in node classification using graph embedding methods. Journal of Machine Learning Research, 24(2), 123-145. [5] Liu, X., & Zhao, Y. (2023). Link prediction in social networks through graph embedding: A survey. ACM Computing Surveys, 55(3), Article 45. [6] Wang, F., & Zhang, T. (2023). Fuzzy logic-based graph embeddings for uncertain networks. IEEE Transactions on Fuzzy Systems, 31(2), 245-258 [7] Chen, L., & Yang, H. (2023). Modeling complex relationships in heterogeneous graphs using fuzzy embeddings. Knowledge-Based Systems, 256, Article 110234. [8] Li, J., & Xu, K. (2023). Enhancing graph representation with fuzzy logic: A survey. ACM Transactions on Intelligent Systems and Technology, 14(3), Article 56. [9] M. Belkin and P. Niyogi/ "Laplacian eigenmaps for dimensionality reduction and data representation/" Neural computation/ vol. 15/ no. 6/ pp. 1373-1396/ 2003. [10] R. R. Coifman and S. Lafon/ "Diffusion maps/" Applied and computational harmonic analysis/ vol. 21/ no. 1/ pp. 5-30/ 2006. [11] M. Coskun/ "A high order proximity measure for linear network embedding/" Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi/ vol. 11/ no. 3/ pp. 477-483/ 2022. [12] D. D. Lee and H. S. Seung/ "Learning the parts of objects by non-negative matrix factorization/" nature/ vol. 401/ no. 6755/ pp. 788-791/ 1999. [13] B. Perozzi/ R. Al-Rfou/ and S. Skiena/ "Deepwalk: Online learning of social representations/" in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining/ 2014/ pp. 701-710. [14] A. Grover and J. Leskovec/ "node2vec: Scalable feature learning for networks/" in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining/ 2016/ pp. 855-864. [15] B. Perozzi/ V. Kulkarni/ and S. Skiena/ "Walklets: Multiscale graph embeddings for interpretable network classification/" arXiv preprint arXiv:1605.02115/ pp. 043238-23/ 2016. [16] P. Veličković/ G. Cucurull/ A. Casanova/ A. Romero/ P. Lio/ and Y. Bengio/ "Graph attention networks/" arXiv preprint arXiv:1710.10903/ 2017. [17] W. Hamilton/ Z. Ying/ and J. Leskovec/ "Inductive representation learning on large graphs/" Advances in neural information processing systems/ vol. 30/ 2017. [18] L. A. Zadeh/ "Fuzzy sets/" Information and Control/ 1965. [19] H. Liu/ T. Zhu/ F. Shang/ Y. Liu/ D. Lv/ and S. Yang/ "Deep fuzzy graph convolutional networks for PolSAR imagery pixelwise classification/" IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing/ vol. 14/ pp. 504-514/ 2020. [20] Z. Yang, W. Cohen, and R. Salakhudinov, "Revisiting semi-supervised learning with graph embeddings," in International Conference on Machine Learning, PMLR, Jun. 2016, pp. 40–48. [21] A. K. McCallum/ K. Nigam/ J. Rennie/ and K. Seymore/ "Automating the construction of internet portals with machine learning/" Information Retrieval/ vol. 3/ pp. 127-163/ 2000. [22] D. Bo/ X. Wang/ C. Shi/ M. Zhu/ E. Lu/ and P. Cui/ "Structural deep clustering network/" in Proceedings of the web conference 2020/ 2020/ pp. 1400-1410. [23] B. Rozemberczki/ C. Allen/ and R. Sarkar/ "Multi-scale attributed node embedding/" Journal of Complex Networks/ vol. 9/ no. 2/ p. cnab014/ 2021. | ||
|
آمار تعداد مشاهده مقاله: 335 تعداد دریافت فایل اصل مقاله: 165 |
||
