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1 Introduction
In science of statistics, the record value or record statistic is the lowest or largest
value that can be obtained from a sequence of random variables, which are usually
independent and identically distributed. Let {X1, X2, . . .} be a sequance of independent
and identically distributed random variables with the cumulative distribution function
(CDF) F (x; θ) and probability density function (PDF) f(x; θ), where θ is an unknown
parameter or parameter vector. Then, Xj is a lower record extracted from this sequence
if its value is less than all previous observations, in other words, Xj is a lower record
value if for all i < j, we have Xj < Xi. In this paper, for m ≥ 1, the sequence
{XL(m),m ≥ 1} denotes the sequance of lower record values, where

L(1) = 1, L(m) = min{j|j > L(m− 1), Xj < XL(m−1)},

and the sequnce {L(m),m ≥ 1} denotes the sequence of record times.
The joint PDF of XL(1), . . . , XL(m) is given by (Arnold et al., 1998)

fXL(1),...,XL(m)
(x1, . . . , xm) = f(xm)

m−1∏
i=1

f(xi)

F (xi)
, −∞ < xm < · · · < x1 < ∞.

Besides, the marginal PDF of m-th lower record for m ≥ 1 is given by

fXL(m)
(x) =

1

Γ(m)

[
− logF (x)

]m−1
f(x), −∞ < x < ∞.

Record data are important in many life areas such as industry, mining, meteorology,
seismology, economics, medicine and lifetime tests. The theory of record values and
its distributional properties have been studied extensively in the literature and many
authors have accomplished valuable researches in this field, see Arnold et al. (1998)
and the references therein for more details regarding record values.

The reliability can be interpreted as the capability of a system in doing an action
under specific practical and environmental conditions in a certain period of time. Let
the continuous random variable T , be the lifetime of a unit with PDF f(t; θ) and CDF
F (t; θ). Then, the reliability or survival function for t > 0 is defined as S(t) = P (T ≥
t). In fact, the survival function can be interpreted as the percentage of products
that survive (remain sound) and are active after a specified time t. The problem of
estimation of a survival function have absorbed the atrraction of many statisticians due
to its great importance. Especially, the problem of survival function estimation based
on record data has been developed by Soliman and Al-Aboud (2008) and MirMostafaee
et al. (2016) for the Rayleigh and Topp-Leone distributions, respectively.

The inverse Lindley distribution (ILD) has been recently introduced by Sharma et
al. (2015) as a lifetime model. Ley Y follow a Lindley distribution with parameter θ
and X = 1

Y . Then, X is said to possess the inverse Lindley distribution with parameter
θ and we write X ∼ ILD(θ). The PDF and CDF of X are given, respectively, by

f(x; θ) =
θ2

θ + 1

(1 + x

x3

)
e−

θ
x , x > 0, θ > 0, (1)

F (x; θ) =

(
1 +

θ

(θ + 1)x

)
e−

θ
x , x > 0, θ > 0,
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The PDF in (1) can be written as the combination of the PDF of the inverse
exponential distribution with parameter θ and the PDF of the inverse gamma with
parameters 2 and θ. The survival function of the inverse Lindley distribution with
parameter θ is given by

St ≡ S(t) = 1−
(
1 +

θ

(θ + 1)t

)
e−

θ
t , t > 0.

In the ensuing sections, we discuss the maximum likelihood (ML) estimation of the sur-
vival function at point t. We also obtain approximate confidence intervals for S(t) with
the help of the approximate properties of ML estimators and the delta method. Then,
we work on the bootstrap estimation of S(t). The Bayesian estimation of the survival
function is also considered by using importance sampling and the Metropolis-Hastings
algorithm. A simulation study is presented to evaluate the proposed estimators in the
paper. We also present an application of the outcomes of the paper to a real data set
example. Finally, we state several remarks.

2 ML estimation
Let XL(1), . . . , XL(m) be the first m lower record values from ILD(θ) and x = (x1, . . . , xm)
be the corresponding observed set of (XL(1), . . . , XL(m)). Then, the likelihood function
of θ given the first m lower records is given by

L∗(θ |x) =
θ2

1 + θ

(
1 + xm

x3
m

)
e−

θ
xm

m−1∏
i=1

θ2

1+θ (
1+xi

x3
i
)e

− θ
xi

(1 + θ
(1+θ)xi

)e
− θ

xi

=
θ2m

1 + θ
· e

− θ
xm

xm

m∏
i=1

(1 + xi)

x2
i

m−1∏
i=1

(θ (1 + xi) + xi)
−1

. (2)

The log-likelihood function is then given by

ℓ(θ) = logL∗(θ|x) = 2m log θ− log(1+ θ)− θ

xm
−

m−1∑
i=1

log (θ (1 + xi) + xi)+A(x), (3)

where A(x) =
∑m

i=1 log(1 + xi) − log xm − 2
∑m

i=1 log xi. Therefore, the ML estimate
of θ will be obtained through maximizing (3) with respect to θ. Upon taking the
derivative of (3) with respect to θ and equating the result with zero, we have

∂ℓ(θ)

∂θ
=

2m

θ
− 1

1 + θ
− 1

xm
−

m−1∑
i=1

1 + xi

θ(1 + xi) + xi
= 0.

Let θ̂ denote the ML estimator of θ. Then, using the invariance property of ML
estimators, the ML estimator of St is obtained to be

Ŝt = 1−
(
1 +

θ̂

(θ̂ + 1)t

)
e−

θ̂
t , t > 0.
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Following Kumar et al. (2024), and Etemad Golestani et al. (2024), we can show that
under some regularity conditions stated in Lehmann and Casella (1998), the approx-
imate distribution of θ̂ is normal with the mean θ and variance [IXL(1),...,XL(m)

(θ)]−1,
where IXL(1),...,XL(m)

(θ) is the expected Fisher information of the record sample about
θ, namely

(θ̂ − θ)
AppD∼ N(0, [IXL(1),...,XL(m)

(θ)]−1),

where AppD∼ denotes ”approximately distributed as”, and

IXL(1),...,XL(m)
(θ) = −E

(
∂2 log fXL(1),...,XL(m)

(X)

∂θ2

)
,

in which X = (XL(1), . . . , XL(m)), provided that the above expectation exists.
Now, we obtain the approximate distribution of St with the help of delta method.

See Shao (2003), Corollary 1.1. on page 61, for more details. Upon taking the derivative
of St with respect to θ, we get

η(θ) =
∂St

∂θ
=

θ(tθ + 2t+ θ + 1)

t2(1 + θ)2
e−

θ
t .

So (Ŝt − St) approximately has a N
(
0, (η(θ))2[IXL(1),...,XL(m)

(θ)]−1
)

distribution, See-
Saini (2024) and TanıŞ et al. (2023) for similar approaches.

From (3), we obtain

∂2ℓ(θ)

∂θ2
=

−2m

θ2
+

1

(1 + θ)2
+

m−1∑
i=1

(
1 + xi

θ (1 + xi) + xi

)2

.

Thus, an estimator for IXL(1),...,XL(m)
(θ) is given by

ÎXL(1),...,XL(m)
(θ) =

2m

θ̂2
− 1

(1 + θ̂)2
−

m−1∑
i=1

(
1 +XL(i)

θ̂
(
1 +XL(i)

)
+XL(i)

)2

.

Therefore, an approximate estimator for the variance of Ŝt becomes

V̂ ar(Ŝt) = (η(θ̂))2[ÎXL(1),...,XL(m)
(θ)]−1.

A two-sided equi-tailed approximate (1−γ)% confidence interval for St based on lower
records is given by

Ŝt ± zγ/2

√
V̂ ar(Ŝt), (4)

where zη is the η-th upper quantile of the standard normal distribution.
The lower and upper bounds of the confidence interval (4) may not belong to

(0, 1), thus we apply the delta method once more and use the tranformation g(St) =

log
(

St

1−St

)
. The approximate distribution of g(Ŝt) is given by

(
g(Ŝt)− g(St)

) AppD∼ N
(
0,

V ar(Ŝt)

S2
t (1− St)2

)
.
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Thus, an approximate estimator for the variance of g(Ŝt) is obtained to be

V̂ ar(g(Ŝt)) =
(η(θ̂))2

Ŝt
2
(1− Ŝt)2ÎXL(1),...,XL(m)

(θ)
.

So a two-sided equi-tailed approximate (1− γ)% confidence interval for g(St) is given
by

g(Ŝt)± zγ/2

√
V̂ ar(g(Ŝt)) ≡ (Lg, Ug).

Finally, an approximate (1 − γ)% confidence interval for St based on lower records is
given by (

eLg

1 + eLg
,

eUg

1 + eUg

)
.

3 Parametric bootstrap estimation
In this section, we propose the bootstrap estimation of St, see Efron and Tibshirani
(1993) for the details regarding bootstrap estimating. We use the following algorithm.
Step 1. Calculate the ML estimate of θ based on the observed lower records, denoted
by θ̂.
Step 2. Generate a bootstrap sample from ILD(θ̂), denoted by X∗

L(1), . . . , X
∗
L(m).

Step 3. Calculate the ML estimate of St based on the bootstrap sample, denoted by
Ŝ∗
t1.

Step 4. Repeat Steps 2 and 3, B times to obtain the bootstrap sample {Ŝ∗
t1, . . . , Ŝ

∗
tB}.

Then, sort the bootstrap sample in order of magnitude. The sorted bootstrap sample
is denoted by {Ŝ∗

t(1), . . . , Ŝ
∗
t(B)}.

A sensible estimate for St based on the generated bootstrap sample is given by
ŜBoot
t = 1

B

∑B
i=1 Ŝ

∗
t(i). Besides, the (1 − γ)% percentile bootstrap confidence interval

for St is given by (
Ŝ∗
t(τ1)

, Ŝ∗
t(τ2)

)
,

where τ1 = (B + 1)γ/2 and τ2 = (B + 1)(1− γ/2).

4 Bayesian estimation
In this section, we focus on employing Bayesian techniques to estimate the survival
function St within the framework of the lower record values from the ILD. Within the
context of Bayesian estimation, the parameter is treated as a random variable with a
prior distribution denoted by π(θ). Let us assume θ follows a gamma prior distribution
with the PDF given by

π(θ) =
ba

Γ(a)
θa−1e−bθ, a > 0, b > 0, θ > 0. (5)

Let X represent the informative sample, and L
(
St, δ(X)

)
denote the loss function,

where δ(X) is an estimator of St. The Bayes estimator of St is derived by minimizing
the posterior risk E[L(St, δ(X))|X] with respect to δ.
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In the existing literature, one commonly employed loss function is the squared
error (SE) function. The Bayes estimator of St under the squared error loss function
is denoted as δSE(X) = E(St|X), provided that this expectation exists and is finite.

However, in practical scenarios, the implications of overestimation and underesti-
mation may not be symmetric, rendering the use of symmetric loss functions inappro-
priate. To address this, Varian (1975) proposed an asymmetric loss function known
as the linear-exponential (LE or linex) loss function. The Bayes estimator of St under
this loss function is expressed as

δLE(X) =
−1

c
logE(e−cSt |X), c ̸= 0,

provided that the above expectation exists and is finite.
Another asymmetric loss function, proposed by Calabria and Pulcini (1994), is the

general entropy (GE) loss function. The Bayes estimator of St under the GE loss
function is given by

δGE(X) = [E(S−p
t |X)]−

1
p , p ̸= 0,

provided that the above expectation exists and is finite.
From the likelihood function in (2) and the prior distribution in (5), the posterior

pdf can be obtained as follows

π(θ|xxx) =
L(θ|xxx)π(θ)∫∞

0
L(θ|xxx)π(θ)dθ

∝ θ2m+a−1e−θ( 1
xm

+b)
{
(1 + θ)

m−1∏
i=1

(
θ(1 + xi) + xi

)}−1
. (6)

The posterior distribution lacks a closed form, necessitating the use of approximate
Bayes methods to estimate St. To this end, Metropolis-Hastings (MH) and importance
sampling (IS) methods have been utilized.

4.1 Metropolis-Hastings method
In this subsection, we use the Metropolis-Hastings (MH) algorithm to approximate the
Bayes estimates of the survival function of the ILD based on lower record values. Using
a similar approach proposed by Dey and Pradhan (2014), we write the MH algorithm
steps as follows:

Algorithm 4.1.
Step 1: Set an initial value θ(0), we propose to consider the ML estimate of θ as the
initial value.

Step 2: For j = 1, . . . , N ′, repeat the following steps:
Set θ = θ(j−1).

Generate a new candidate parameter value δ from N
(
log(θ),

Î−1
XL(1),...,XL(m)

(θ)
∣∣
θ=θ(0)

[θ(0)]2

)
,

where Î−1
XL(1),...,XL(m)

(θ) is the inverse of the observed Fisher information. Set θ′ =

exp(δ).
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Calculate P = min
{
1, π(θ′|xxx)q(θ|θ′)

π(θ|xxx)q(θ′|θ)
}

, where q(x|b) is the pdf of the log-normal distribu-

tion with parameters log(b) and
Î−1
XL(1),...,XL(m)

(θ)
∣∣
θ=θ(0)

[θ(0)]2
.

Update θ(j) = θ′ with probability P , otherwise set θ(j) = θ.
Step 3: Discard the first k generated data, where k is the burn-in period.
Step 4: Compute {St,l, l = 1, . . .M} based on {θl, l = 1, . . . ,M}, where M = N ′ − k.

The approximate Bayes estimates of St under the SE, LE, and GE loss functions
are given by S̃t

SE
= 1

M

∑M
l=1 St,l, S̃t

LE
= − 1

c log
(

1
M

∑M
l=1 e

−cSt,l
)
, and S̃t

GE
=(

1
M

∑M
l=1 S

−p
t,l

)− 1
p , respectively.

In order to obtain the Chen and Shao’s shortest width credible intervals (CSSW
CrI) for St, based on generated samples using the MH technique, we shall use a similar
procedure described in Chen and Shao (1999) (we do not write the details for the sake
of brevity).

4.2 Importance sampling method
To implement the importance sampling (IS) procedure, we rewrite the posterior pdf
(6) as follows:

π(θ|xxx) = C(xxx)gamma
(
θ; 2m+ a,

1

xm
+ b
)
h(θ),

where gamma(θ; 2m+ a, 1
xm

+ b) is the pdf of the gamma distribution with shape and
rate parameters 2m + a and 1

xm
+ b, respectively, C(xxx) = m(xxx)Γ(2m+a)

(x−1
m +b)

2m+a , m(xxx) is the

normalizing constant of the posterior distribution, and h(θ) =

{
(1 + θ)

∏m−1
i=1

(
θ(1 +

xi) + xi

)}−1

. Now, consider the following algorithm.

Algorithm 4.2.
Step 1: Generate θ from the gamma distribution with shape and rate parameters respec-
tively as 2m+ a and 1

xm
+ b.

Step 2: Repeat Step 1, N times to obtain the importance sample θ1, θ2, . . . , θN .
Step 3: Compute St for each θ in Step 2, to obtain St,i for i = 1, . . . N .

The approximate Bayes estimate of St under the SE loss function is given by Ŝt
SE

=∑N
i=1 St,iwi, where wi =

h(θi)∑N
i=1 h(θi)

. Additionally, the approximate Bayes estimates of

St under the LE and GE loss functions are Ŝt
LE

= − 1
c log

(∑N
i=1 e

−cSt,i

i wi

)
and

Ŝt
GE

=
(∑N

i=1 St,i
−pwi

)− 1
p

, respectively.
We can also find the CSSW CrI for St based on the set {St,1, . . . , St,N} generated

by an IS method. In this regard, we shall use a similar procedure described in Chen
and Shao (1999) (we do not write the details for the sake of brevity).
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5 A simulation study and conclusions
In this section, we present a simulation study to assess both point and interval es-
timators. The simulation consists of M = 1000 iterations, and B = 99 replications
for the bootstrap estimation. We consider parameter values θ = 0.5, 1, 2 and num-
bers of lower records m = 3, 4, 5. Additionally, we evaluate different values of t,
denoted as t1, t2, and t3, where ti represents the i-th quartile of the distribution. Thus,
S(t1) = 0.75, S(t2) = 0.5 and S(t3) = 0.25.

For Bayesian estimation, two gamma priors are applied: Prior 1 with parameters
(a1, b1) = (0.2, 1.5) and Prior 2 with parameters (a2, b2) = (3, 1). Furthermore, we
consider c = −0.5, 0.5 for the LE loss function, and p = −0.5, 0.5 for the GE loss
function. The simulation study results are based on N = 1000 iterations.

In this simulation, point estimates are obtained using the ML, bootstrap and (ap-
proximate) Bayesian methods, while the 95% interval estimates are derived using ap-
proximate, percentile bootstrap and Bayesian methods. The classical point estimators
are evaluated based on two criteria: (i) the estimated mean squared error (EMSE) and
(ii) the estimated bias (EB). Bayesian point estimators are assessed using two criteria:
(i) the estimated risk and (ii) the estimated bias (EB). Moreover, the 95% interval
estimators are evaluated based on two criteria: (i) the average length (AL) and (ii)
coverage probability (CP).

The numerical results of the simulation for the point estimation are given in Tables
1, 3, and 4 and the results for the interval estimation are presented in Tables 2, and 5.
In Tables 3 and 4, BS denotes the Bayes estimator under the SE loss function, BLc1
and BLc2 denote the Bayes estimators under the LE loss function with c = −0.5 and
c = +0.5, respectively, and BGEp1 and BGEp2 denote the Bayes estimators under the
GE loss function with p = −0.5 and p = +0.5, respectively. We note the estimated risk
of each Bayes estimator is calculated according to its own loss function. From Table 1,
we see that the point bootstrap estimators outperform the ML estimators in the sense
of EMSE for t1 and t2, while the ML estimators are superior to the point bootstrap
estimators for t3 in terms of EMSE. Besides, we observe that the ML estimators have
less EBs than the point bootstrap estimators. The EMSE criterion is decreasing with
respect to the number of records, m.

From Table 2, we see that for t2 and t3, the bootstrap confidence intervals have
larger ALs in comparison with the approximate confidence intervals (except for the one
case). For t1, the approximate intervals have larger ALs than the bootstrap confidence
intervals. The approximate confidence intervals have larger CPs than the bootstrap
ones. The AL criterion is decreasing with respect to the number of records, m. From
Table 3, we see that prior selection played a significant role in the performance of
Bayesian methods. Prior 1 tended to underestimate St, while Prior 2 tended to overes-
timate it in the most cases. Moreover, the estimated biases are decreasing with respect
to θ except for the one case. From Table 4, we observe that the MH method generally
outperformed the IS method in terms of estimated risk for Prior 1 in the most cases,
while the opposite was observed for Prior 2. Table 5 reveals that the CSSW CrIs based
on the MH method provide smaller ALs than the ones based on the IS method for t1
in the most cases, whereas the reverse is true for t2 and t3. Prior 2 leads to not large
CPs when θ equals 0.5. In conclusion, the choice of method, prior, and parameters
significantly influenced the performance of the simulation results. Both classical and
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Bayesian methods showed strengths and weaknesses across different scenarios, high-
lighting the importance of careful method selection in statistical analysis

Table 1: EMSEs and EBs of the ML and bootstrap estimators.
ML Bootstrap

θ m t1 t2 t3 t1 t2 t3

0.5

3 EMSE 0.0317 0.0459 0.0352 0.0234 0.0408 0.0428
EB 0.0041 0.0484 0.0623 0.0112 0.0843 0.1160

4 EMSE 0.0273 0.0369 0.0248 0.0211 0.0335 0.0303
EB −0.0005 0.0350 0.0450 0.0054 0.0665 0.0894

5 EMSE 0.0218 0.0302 0.0194 0.0174 0.0282 0.0238
EB 0.0050 0.0342 0.0399 0.0092 0.0617 0.0776

1

3 EMSE 0.0315 0.0476 0.0389 0.0237 0.0444 0.0478
EB 0.0185 0.0653 0.0753 0.0258 0.1022 0.1299

4 EMSE 0.0265 0.0386 0.0271 0.0207 0.0361 0.0334
EB 0.0104 0.0481 0.0547 0.0167 0.0797 0.0985

5 EMSE 0.0216 0.0278 0.0167 0.0175 0.0265 0.0209
EB 0.0009 0.0279 0.0330 0.0060 0.0564 0.0699

2

3 EMSE 0.0292 0.0451 0.0338 0.0222 0.0427 0.0436
EB 0.0171 0.0616 0.0682 0.0276 0.1018 0.1247

4 EMSE 0.0234 0.0336 0.0220 0.0185 0.0326 0.0284
EB 0.0139 0.0471 0.0491 0.0214 0.0804 0.0930

5 EMSE 0.0217 0.0292 0.0174 0.0175 0.0280 0.0218
EB 0.0037 0.0323 0.0359 0.0111 0.0617 0.0721

Table 2: ALs and CPs for the 95% approximate and percentile bootstrap confidence
intervals.

Approximate Bootstrap
θ m t1 t2 t3 t1 t2 t3

0.5

3 AL 0.7034 0.6833 0.5582 0.5690 0.6844 0.6513
CP 0.980 0.987 0.964 0.913 0.913 0.913

4 AL 0.6356 0.6300 0.5018 0.5455 0.6482 0.5807
CP 0.977 0.983 0.966 0.939 0.939 0.939

5 AL 0.5894 0.5944 0.4663 0.5202 0.6158 0.5309
CP 0.985 0.982 0.964 0.943 0.943 0.943

1

3 AL 0.6990 0.6765 0.5485 0.5441 0.6682 0.6459
CP 0.971 0.983 0.943 0.897 0.897 0.897

4 AL 0.6247 0.6184 0.4885 0.5280 0.6344 0.5695
CP 0.979 0.985 0.953 0.907 0.907 0.907

5 AL 0.5822 0.5802 0.4423 0.5202 0.6101 0.5115
CP 0.972 0.975 0.958 0.944 0.944 0.944

2

3 AL 0.6934 0.6629 0.5260 0.5393 0.6652 0.6380
CP 0.989 0.994 0.961 0.881 0.881 0.881

4 AL 0.6164 0.6057 0.4669 0.5180 0.6260 0.5545
CP 0.990 0.989 0.960 0.912 0.912 0.912

5 AL 0.5656 0.5598 0.4201 0.5016 0.5902 0.4938
CP 0.978 0.972 0.955 0.922 0.922 0.922

.
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Table 3: EBs of the Bayes estimators.
BS BLc1 BLc2 BGEp1 BGEp2

θ m t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

0.5

3 IS Prior 1 -0.088 -0.034 0.009 -0.080 -0.025 0.014 -0.097 -0.042 0.004 -0.105 -0.054 -0.009 -0.147 -0.104 -0.049
Prior 2 0.095 0.179 0.187 0.099 0.184 0.192 0.092 0.173 0.182 0.090 0.168 0.173 0.076 0.143 0.143

MH Prior 1 -0.027 0.031 0.058 -0.019 0.040 0.064 -0.036 0.022 0.052 -0.042 0.010 0.038 -0.080 -0.040 -0.007
Prior 2 0.137 0.240 0.250 0.140 0.245 0.255 0.134 0.235 0.244 0.133 0.231 0.237 0.124 0.211 0.209

4 IS Prior 1 -0.077 -0.030 0.007 -0.070 -0.023 0.011 -0.084 -0.036 0.003 -0.090 -0.046 -0.008 -0.121 -0.085 -0.039
Prior 2 0.080 0.149 0.151 0.083 0.155 0.156 0.076 0.144 0.147 0.074 0.139 0.139 0.062 0.117 0.113

MH Prior 1 -0.021 0.030 0.052 -0.015 0.037 0.056 -0.028 0.022 0.047 -0.033 0.013 0.036 -0.060 -0.025 0.001
Prior 2 0.119 0.205 0.204 0.122 0.209 0.209 0.116 0.200 0.200 0.115 0.196 0.193 0.106 0.177 0.168

5 IS Prior 1 -0.060 -0.020 0.010 -0.054 -0.014 0.013 -0.067 -0.026 0.006 -0.071 -0.034 -0.003 -0.095 -0.065 -0.029
Prior 2 0.077 0.137 0.134 0.080 0.142 0.138 0.073 0.132 0.130 0.072 0.128 0.124 0.061 0.109 0.101

MH Prior 1 -0.012 0.032 0.048 -0.007 0.039 0.052 -0.018 0.026 0.045 -0.022 0.018 0.035 -0.044 -0.013 0.006
Prior 2 0.112 0.186 0.179 0.114 0.191 0.183 0.109 0.182 0.175 0.108 0.178 0.169 0.099 0.161 0.147

1

3 IS Prior 1 -0.130 -0.080 -0.029 -0.121 -0.072 -0.026 -0.139 -0.087 -0.033 -0.148 -0.100 -0.045 -0.192 -0.147 -0.079
Prior 2 0.079 0.150 0.149 0.083 0.155 0.153 0.075 0.144 0.144 0.073 0.139 0.136 0.059 0.114 0.108

MH Prior 1 -0.084 -0.037 0.000 -0.075 -0.028 0.005 -0.094 -0.045 -0.004 -0.102 -0.058 -0.018 -0.146 -0.110 -0.057
Prior 2 0.120 0.206 0.201 0.123 0.211 0.206 0.117 0.201 0.196 0.116 0.197 0.189 0.105 0.176 0.162

4 IS Prior 1 -0.110 -0.067 -0.023 -0.103 -0.060 -0.020 -0.117 -0.073 -0.026 -0.124 -0.083 -0.036 -0.156 -0.120 -0.063
Prior 2 0.066 0.125 0.121 0.069 0.130 0.125 0.062 0.120 0.117 0.060 0.115 0.111 0.047 0.093 0.088

MH Prior 1 -0.064 -0.022 0.007 -0.057 -0.015 0.011 -0.071 -0.029 0.004 -0.077 -0.039 -0.007 -0.108 -0.773 -0.038
Prior 2 0.104 0.176 0.166 0.107 0.180 0.170 0.101 0.171 0.162 0.099 0.167 0.156 0.090 0.148 0.133

5 IS Prior 1 -0.101 -0.064 -0.025 -0.095 -0.059 -0.023 -0.107 -0.070 -0.027 -0.112 -0.078 -0.035 -0.138 -0.107 -0.058
Prior 2 0.052 0.100 0.095 0.056 0.105 0.098 0.049 0.096 0.092 0.047 0.091 0.086 0.035 0.072 0.066

MH Prior 1 -0.058 -0.022 0.004 -0.052 -0.016 0.007 -0.065 -0.028 0.001 -0.069 -0.036 -0.008 -0.094 -0.068 -0.033
Prior 2 0.089 0.148 0.135 0.092 0.152 0.138 0.086 0.143 0.132 0.085 0.140 0.126 0.075 0.122 0.105

2

3 IS Prior 1 -0.229 -0.173 -0.091 -0.220 -0.167 -0.089 -0.237 -0.179 -0.093 -0.248 -0.192 -0.103 -0.296 -0.234 -0.128
Prior 2 0.025 0.069 0.068 0.030 0.075 0.072 0.020 0.063 0.065 0.018 0.057 0.057 0.000 0.031 0.033

MH Prior 1 -0.212 -0.159 -0.083 -0.202 -0.152 -0.081 -0.221 -0.166 -0.086 -0.233 -0.180 -0.097 -0.284 -0.227 -0.125
Prior 2 0.064 0.113 0.102 0.068 0.119 0.106 0.059 0.107 0.098 0.057 0.102 0.091 0.043 0.077 0.065

4 IS Prior 1 -0.188 -0.144 -0.076 -0.181 -0.138 -0.074 -0.195 -0.149 -0.077 -0.203 -0.158 -0.085 -0.238 -0.192 -0.106
Prior 2 0.022 0.060 0.059 0.026 0.065 0.062 0.018 0.055 0.056 0.016 0.050 0.050 0.002 0.029 0.030

MH Prior 1 -0.163 -0.122 -0.063 -0.155 -0.116 -0.061 -0.171 -0.128 -0.065 -0.178 -0.139 -0.074 -0.215 -0.175 -0.098
Prior 2 0.059 0.103 0.091 0.062 0.108 0.094 0.055 0.097 0.088 0.053 0.093 0.081 0.041 0.072 0.060

5 IS Prior 1 -0.166 -0.127 -0.067 -0.160 -0.123 -0.065 -0.173 -0.132 -0.068 -0.178 -0.140 -0.075 -0.205 -0.167 -0.093
Prior 2 0.014 0.048 0.048 0.017 0.052 0.051 0.010 0.044 0.046 0.008 0.039 0.040 -0.005 0.020 0.024

MH Prior 1 -0.138 -0.102 -0.052 -0.131 -0.097 -0.050 -0.144 -0.107 -0.054 -0.150 -0.116 -0.061 -0.178 -0.146 -0.082
Prior 2 0.049 0.088 0.078 0.052 0.092 0.081 0.045 0.083 0.075 0.044 0.079 0.070 0.032 0.061 0.052
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Table 4: Estimated risks of the Bayes estimators.
BS BLc1 BLc2 BGEp1 BGEp2

θ m t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

0.5

3 IS Prior1 0.0314 0.0264 0.0148 0.0039 0.0033 0.0019 0.0040 0.0018 0.0033 0.0152 0.0264 0.0394 0.0192 0.0329 0.0477
Prior2 0.0227 0.0587 0.0631 0.0028 0.0072 0.0077 0.0029 0.0075 0.0081 0.0044 0.0168 0.0418 0.0048 0.0184 0.0476

MH Prior1 0.0195 0.0245 0.0192 0.0024 0.0031 0.0025 0.0025 0.0030 0.0023 0.0076 0.0151 0.0266 0.0103 0.0195 0.0313
Prior2 0.0282 0.0803 0.0918 0.0035 0.0097 0.0111 0.0036 0.0104 0.0119 0.0049 0.0210 0.0551 0.0052 0.0232 0.0655

4 IS Prior1 0.0272 0.0238 0.0128 0.0033 0.0030 0.0016 0.0035 0.0030 0.0016 0.0119 0.0215 0.0327 0.0142 0.0254 0.0377
Prior2 0.0201 0.0473 0.0456 0.0025 0.0058 0.0056 0.0025 0.0060 0.0058 0.0041 0.0143 0.0338 0.0045 0.0157 0.0378

MH Prior1 0.0184 0.0235 0.0172 0.0023 0.0030 0.0022 0.0023 0.0029 0.0021 0.0065 0.0137 0.0241 0.0081 0.0162 0.0271
Prior2 0.0243 0.0642 0.0661 0.0030 0.0078 0.0080 0.0031 0.0083 0.0085 0.0043 0.0175 0.0438 0.0045 0.0192 0.0506

5 IS Prior1 0.0217 0.0204 0.0112 0.0027 0.0026 0.0014 0.0028 0.0026 0.0014 0.0084 0.0159 0.0250 0.0100 0.0188 0.0289
Prior2 0.0176 0.0402 0.0363 0.0022 0.0049 0.0045 0.0022 0.0051 0.0046 0.0034 0.0122 0.0283 0.0037 0.0133 0.0314

MH Prior1 0.0153 0.0206 0.0147 0.0019 0.0026 0.0019 0.0019 0.0026 0.0018 0.0048 0.0107 0.0195 0.0058 0.0125 0.0217
Prior2 0.0214 0.0542 0.0518 0.0026 0.0066 0.0063 0.0027 0.0069 0.0066 0.0038 0.0151 0.0367 0.0040 0.0163 0.0415

1

3 IS Prior1 0.0369 0.0244 0.0092 0.0045 0.0030 0.0012 0.0047 0.0031 0.0011 0.0191 0.0310 0.0421 0.0235 0.0379 0.0511
Prior2 0.0204 0.0467 0.0432 0.0025 0.0057 0.0053 0.0026 0.0059 0.0055 0.0043 0.0146 0.0331 0.0047 0.0156 0.0360

MH Prior1 0.0222 0.0161 0.0073 0.0027 0.0020 0.0010 0.0029 0.0020 0.0009 0.0104 0.0170 0.0238 0.0142 0.0233 0.0319
Prior2 0.0246 0.0636 0.0618 0.0030 0.0078 0.0076 0.0031 0.0081 0.0079 0.0044 0.0177 0.0427 0.0047 0.0190 0.0477

4 IS Prior1 0.0309 0.0222 0.0088 0.0038 0.0028 0.0011 0.0039 0.0028 0.0011 0.0139 0.0237 0.0332 0.0166 0.0281 0.0391
Prior2 0.0177 0.0382 0.0326 0.0022 0.0047 0.0040 0.0022 0.0048 0.0041 0.0037 0.0122 0.0267 0.0041 0.0132 0.0294

MH Prior1 0.0192 0.0164 0.0082 0.0023 0.0021 0.0011 0.0025 0.0020 0.0010 0.0077 0.0137 0.0204 0.0097 0.0172 0.0248
Prior2 0.0209 0.0512 0.0464 0.0026 0.0063 0.0057 0.0026 0.0065 0.0059 0.0038 0.0145 0.0341 0.0040 0.0156 0.0379

5 IS Prior1 0.0262 0.0190 0.0074 0.0032 0.0024 0.0009 0.0033 0.0024 0.0009 0.0112 0.0194 0.0274 0.0129 0.0223 0.0313
Prior2 0.0149 0.0288 0.0222 0.0018 0.0036 0.0028 0.0019 0.0036 0.0028 0.0033 0.0100 0.0209 0.0036 0.0107 0.0222

MH Prior1 0.0170 0.0147 0.0070 0.0021 0.0018 0.0009 0.0022 0.0018 0.0009 0.0066 0.0119 0.0178 0.0079 0.0143 0.0209
Prior2 0.0176 0.0394 0.0323 0.0022 0.0049 0.0040 0.0022 0.0050 0.0041 0.0033 0.0119 0.0266 0.0035 0.0125 0.0285

2

3 IS Prior1 0.0639 0.0375 0.0108 0.0079 0.0047 0.0013 0.0080 0.0047 0.0014 0.0332 0.0519 0.0672 0.0396 0.0613 0.0790
Prior2 0.0127 0.0211 0.0143 0.0016 0.0027 0.0018 0.0016 0.0026 0.0018 0.0032 0.0084 0.0160 0.0037 0.0091 0.0164

MH Prior1 0.0513 0.0298 0.0084 0.0062 0.0036 0.0010 0.0066 0.0038 0.0011 0.0243 0.0374 0.0477 0.0319 0.0504 0.0658
Prior2 0.0124 0.0258 0.0189 0.0016 0.0033 0.0024 0.0015 0.0032 0.0023 0.0025 0.0084 0.0179 0.0026 0.0083 0.0168

4 IS Prior1 0.0469 0.0287 0.0085 0.0058 0.0036 0.0011 0.0059 0.0036 0.0011 0.0219 0.0352 0.0463 0.0252 0.0404 0.0531
Prior2 0.0118 0.0186 0.0120 0.0015 0.0023 0.0015 0.0015 0.0023 0.0015 0.0030 0.0076 0.0141 0.0034 0.0082 0.0146

MH Prior1 0.0347 0.0209 0.0061 0.0042 0.0025 0.0008 0.0045 0.0027 0.0008 0.0150 0.0238 0.0310 0.0186 0.0304 0.0404
Prior2 0.0119 0.0234 0.0164 0.0015 0.0030 0.0021 0.0015 0.0029 0.0020 0.0024 0.0078 0.0162 0.0025 0.0078 0.0156

5 IS Prior1 0.0402 0.0254 0.0077 0.0050 0.0032 0.0010 0.0051 0.0032 0.0010 0.0178 0.0293 0.0391 0.0197 0.0322 0.0428
Prior2 0.0120 0.0175 0.0107 0.0015 0.0022 0.0014 0.0015 0.0022 0.0013 0.0031 0.0076 0.0136 0.0035 0.0083 0.0145

MH Prior1 0.0287 0.0181 0.0055 0.0035 0.0022 0.0007 0.0037 0.0023 0.0007 0.0119 0.0194 0.0258 0.0139 0.0232 0.0311
Prior2 0.0116 0.0214 0.0144 0.0014 0.0027 0.0018 0.0015 0.0027 0.0018 0.0024 0.0074 0.0149 0.0026 0.0077 0.0150
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Table 5: ALs and CPs for the 95% CSSW CrIs.
IS Prior 1 IS Prior 2 MH Prior 1 MH Prior 2

θ m t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

0.5

3 AL 0.6317 0.6402 0.4619 0.3711 0.5267 0.5226 0.5940 0.6636 0.5285 0.2967 0.4739 0.5298
CP 0.937 0.927 0.925 0.719 0.718 0.776 0.967 0.960 0.961 0.566 0.568 0.633

4 AL 0.5811 0.5900 0.4175 0.3801 0.5152 0.4756 0.5401 0.6091 0.4759 0.3128 0.4780 0.4938
CP 0.916 0.906 0.905 0.747 0.750 0.805 0.958 0.952 0.953 0.633 0.636 0.681

5 AL 0.5348 0.5460 0.3833 0.3710 0.4953 0.4368 0.5061 0.5770 0.4436 0.3170 0.4757 0.4676
CP 0.913 0.910 0.915 0.766 0.774 0.824 0.946 0.944 0.952 0.665 0.676 0.735

1

3 AL 0.6542 0.6156 0.4020 0.3944 0.5361 0.4897 0.6494 0.6635 0.4634 0.3269 0.4983 0.5103
CP 0.908 0.903 0.902 0.792 0.788 0.839 0.960 0.955 0.954 0.655 0.659 0.727

4 AL 0.5946 0.5641 0.3673 0.3940 0.5117 0.4376 0.5834 0.6065 0.4256 0.3359 0.4885 0.4650
CP 0.898 0.889 0.892 0.810 0.813 0.860 0.973 0.963 0.961 0.707 0.710 0.762

5 AL 0.5497 0.5173 0.3313 0.3946 0.4893 0.3919 0.5463 0.5668 0.3903 0.3452 0.4841 0.4303
CP 0.914 0.909 0.909 0.836 0.846 0.879 0.965 0.958 0.959 0.750 0.765 0.830

2

3 AL 0.6711 0.5347 0.2988 0.4635 0.5506 0.4187 0.7053 0.5847 0.3346 0.4214 0.5510 0.4559
CP 0.813 0.781 0.773 0.939 0.938 0.961 0.923 0.912 0.906 0.931 0.934 0.980

4 AL 0.6092 0.5022 0.2865 0.4409 0.5090 0.3746 0.6381 0.5573 0.3295 0.4019 0.5184 0.4152
CP 0.840 0.820 0.811 0.931 0.938 0.962 0.941 0.929 0.924 0.902 0.907 0.954

5 AL 0.5496 0.4592 0.2661 0.4184 0.4660 0.3332 0.5812 0.5230 0.3155 0.3907 0.4880 0.3790
CP 0.816 0.799 0.799 0.899 0.905 0.930 0.935 0.918 0.907 0.888 0.892 0.931
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6 Application to real data
To illustrate the practical application of the estimation methods discussed in this pa-
per, we consider the dataset used by Crowder (2000) that shows the lifetimes of steel
specimens in units of 1000000 cycles of 24 steel specimens under stress. Specifically,
we focus on the stress level “32”. The dataset under this stress level is given as follows:
1.144, 0.231, 0.523, 0.474, 4.510, 3.107, 0.815, 6.297, 1.580, 0.605, 1.786, 0.206, 1.943,
0.935, 0.283, 1.336, 0.727, 0.370, 1.056, 0.413, 0.619, 2.214, 1.826, 0.597

To verify that the inverse Lindley distribution is suitable for these data, a Kolmogorov-
Smirnov test was performed, yielding a statistic of 0.0917 with a p-value of 0.9765,
confirming the suitability of the inverse Lindley distribution for these data. The esti-
mate of the distribution parameter was θ̂ = 0.9892 which will be used to compute t1,
t2, and t3, where ti denotes the i-th quartile of the distribution.

Since our study is based on lower record values, the lower records from the afore-
mentioned data were extracted as: 1.144, 0.231, and 0.206. The proposed methods of
the paper were applied to these values, yielding the following results. The ML esti-
mate of θ was obtained as 0.8466. Under the same settings stated in the simulation
study for the priors and the parameters of the loss functions, the point estimates of
the reliability function under different estimation methods are presented in Table 6.
Besides, the 95% interval estimates of the reliability were also derived and are shown
in Table 7. From Table 6, we see that the approximate Bayes point estimates under
Prior 2 based on the IS method and the bootstrap estimates are the closest values to
the real values of reliability functions. Table 7 reveals that most of the CSSW CrIs
possess smaller lengths than those based on classical ones.

Table 6: Point estimates of the reliability function.
Method Prior Estimator t1 t2 t3
ML 0.6748 0.4268 0.2047
bootstrap 0.6948 0.4806 0.25877

IS

Prior 1
BS 0.5472 0.3416 0.1648
BLc1 0.5570 0.3483 0.1671
BLc2 0.5374 0.3350 0.1625
BGEp1 0.5269 0.3210 0.1512
BGEp2 0.4791 0.2758 0.1233

Prior 2
BS 0.7897 0.5716 0.3130
BLc1 0.7947 0.5782 0.3166
BLc2 0.7845 0.5650 0.3093
BGEp1 0.7825 0.5590 0.3008
BGEp2 0.7662 0.5308 0.2746

MH

Prior 1
BS 0.6148 0.3985 0.1981
BLc1 0.6240 0.4057 0.2008
BLc2 0.6055 0.3914 0.1954
BGEp1 0.5975 0.3790 0.1842
BGEp2 0.5555 0.3344 0.1545

Prior 2
BS 0.89296 0.6174 0.3462
BLc1 0.8331 0.6229 0.3496
BLc2 0.8258 0.6118 0.3428
BGEp1 0.8247 0.6075 0.3357
BGEp2 0.8135 0.5852 0.3131
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Table 7: 95% Interval estimates of the reliability function.
t1 t2 t3

lower upper lower upper lower upper
Approximate 0.2107 0.9416 0.1222 0.7993 0.0546 0.5341

Bootstrap 0.2755 0.9981 0.1403 0.9635 0.0577 0.7648
IS Prior 1 0.1434 0.8784 0.0682 0.6577 0.0204 0.3533

Prior 2 0.4939 0.9895 0.2562 0.8585 0.0893 0.5182
MH Prior 1 0.2724 0.9429 0.1151 0.7156 0.0379 0.4042

Prior 2 0.5838 0.9847 0.3492 0.8869 0.1467 0.5806

7 Discussion and conclusion
Record data, representing extreme values in a sequence of random variables, were vi-
tal in various fields. The inverse Lindley distribution offered a flexible framework for
survival analysis. The paper provided theoretical foundations and practical tools for
survival function estimation. Actually, the paper focused on estimating the survival
function for the inverse Lindley distribution using lower records, a critical aspect in un-
derstanding lifetime phenomena. It explored estimation techniques including maximum
likelihood, bootstrap, and Bayesian approaches like Metropolis-Hastings and impor-
tance sampling methods. The approximate confidence intervals and credible intervals
were derived, and a simulation study evaluated the proposed estimators. Through a
simulation study, we assessed the performance of the proposed estimators to aid re-
searchers in method selection for survival analysis. A real data set example is also
given to check the applicability of the theoretical results of the paper. The simulation
study and the real data example establish the effect of the priors and methods that are
used to obtain the estimates.

All the computations of this paper were done using the statistical software R
(R Core Team, 2022) and the packages coda (Plummer et al., 2006, 2018), LindleyR
(Mazucheli et al., 2016) and lamW (Adler, 2017) therein.
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