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Abstract: Since the inverse Weibull distribution is one of the well-known lifetime
distributions in statistical inference, estimating its parameters, as well as estimating
its probability density function and cumulative distribution function through various
statistical methods, is recommended. Throughout this study, we develop the best
two-observation percentile estimation for both the probability density function and
cumulative distribution function associated with the inverse Weibull distribution. To
gauge its efficacy, we conduct a comparative analysis, pitting the best two-observation
percentile estimation against estimations derived through maximum likelihood and per-
centiles, utilizing Monte Carlo simulations and scrutiny of two real datasets.
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1 Introduction
Scholars have conducted a comparative analysis of the estimation of probability den-
sity functions (PDFs) and cumulative distribution functions (CDF) for diverse lifetime
distributions. This investigation involved the utilization of various estimators, namely
maximum likelihood (ML), uniformly minimum variance unbiased (UMVU), percentile
(PC), least squares (LS), and weighted least squares (WLS). Numerous research pa-
pers have aimed to estimate parameters for various lifetime distributions. For instance,

∗Corresponding author:makhdoom@pnu.ac.ir



Inference on the PDF and CDF for conducting an efficient estimation 160

Dixit and Nooghabi (2010) focused on estimating the PDF and cumulative distribu-
tion function CDF for the Pareto distribution. In a similar vein, Jabbari Nooghabi
(2010) delved into the exponentiated Pareto distribution, while Bagheri et al. (2016a)
tackled the exponentiated Gumbel distribution. Alizadeh et al. (2013) addressed the
generalized Rayleigh distribution, Bagheri et al. (2014) investigated the generalized
Poisson-exponential distribution, and Maleki Jebely et al. (2018) concentrated their
efforts on the Inverse Rayleigh distribution. Bagheri et al. (2016b) considered estima-
tion of the PDF and the CDF of the Weibull extension model. Ghasemi Cherati et
al. (2021) carried out the estimation of the PDF and CDF for the generalized inverted
Weibull distribution.

Since the Rayleigh and Weibull distributions, particularly the Weibull distribution,
are of significant interest to statisticians in many statistical fields, and are especially
useful in data related to lifetime distributions, research on distributions derived from
the Weibull distribution or various models based on the Weibull distribution is also
important. Furthermore, all previous studies on this topic have focused on specific
estimation methods such as maximum likelihood estimation (MLE), method of mo-
ments, percentile estimation, UMVUE, and least squares estimation, or combinations
of these methods. However, none of these researches have used the method of best
two-observation percentile estimation (BTPE). The innovation of this paper lies in the
introduction of the BTPE method and its application.

In this investigation, the PDF and CDF of the inverse Weibull (IW) distribution are
derived using the BTPE method. These results are then juxtaposed with correspond-
ing estimations obtained through percentile (PC) and MLE procedures. If a random
variable Y follows a Weibull distribution with the PDF

f(y;α, λ) = αλαyα−1e−(λy)α , y > 0,

then the random variable X = 1
Y assumes an IW distribution with the PDF

f(x;α, λ) = αλαx−(α+1)e−(λx−1)α , x > 0. (1)

Here, α > 0 and λ > 0 represent the shape and scale parameters, respectively. The ob-
tained PDF and CDF using the BTPE method are compared with estimations derived
from PC and MLE procedures.

Henceforth, the IW distribution with parameters α and λ will be denoted as
IW (α, λ). If a random variable X follows IW (α, λ), then its distribution function,
denoted by F (x;α, λ), is expressed as

F (x;α, λ) = e−(λx−1)α , x > 0. (2)

The IW model has been established as a suitable framework for characterizing the
degradation phenomena observed in mechanical components, particularly dynamic ele-
ments of diesel engines, as illustrated in the work of Murthy et al. (2004). Additionally,
the IW model has been identified in the context of the physical failure process, as out-
lined by Erto and Rapone (1984). The study by Erto and Rapone (1984) demonstrated
the efficacy of the IW model in fitting survival data, such as the breakdown times of an
insulating fluid under constant tension, as also noted by Nelson (2005). In alignment
with the structure of this paper, Section 2 presents the derivation of BTPE, PCE, and
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MLE. Section 3 employs Monte Carlo simulations and a real dataset to compare the
performance of these estimators. The findings are presented in Section 4.

2 Approaches for determining estimates
In this section, consider a random sample X1, . . . , Xn with order statistics Y1, . . . , Yn,
originating from a distribution characterized by the PDF (1) and CDF (2). The BTPE,
PCE, and MLE for the PDF (1) and cumulative distribution function (2) are derived
and discussed.

2.1 Estimation of the BTPE
Assume we have a random sample X1, . . . , Xn from a distribution with a CDF denoted
by (2). The order statistics of this sample are Y1, . . . , Yn, and let pi represent the
percentile of Yi then, F (Yi, α, λ) = pi or

α(log λ− log Yi) = log(− log pi). (3)

Considering two real values, p1 and p2 0 < p1 < p2 < 1, and utilizing relation (3), a
two-observation percentile estimation of α, denoted as α∗ can be calculated as follows

α∗ =
log(− log p2)− log(− log p1)

log Yk1
− log Yk2

=
log[− log(1− p∗1)]− log[− log(1− p∗2)]

log Yk1 − log Yk2

=
k

log Yk1 − log Yk2

,

where k = log[− log(1− p∗1)]− log[− log(1− p∗2)], and for each i = 1, 2, let ki be equal
to [npi] if npi is an integer; otherwise, set ki = [npi] + 1, where [npi] represents the
greatest integer smaller than npi. Additionally, define p∗1 = 1 − p2 and p∗2 = 1 − p1.
According to Dubey (1967), the asymptotic normal distribution of α∗ is characterized
by a mean of α and a variance given by

Var(α∗) =
α2

nk2

[
p∗1

(1− p∗1) log
2(1− p∗1)

+
p∗2

(1− p∗2) log
2(1− p∗2)

− 2p∗1p
∗
2

(1− p∗1)(1− p∗2) log(1− p∗1) log(1− p∗2)

]
.

To minimize Var(α∗), it is necessary to determine p∗1 and p∗2. As suggested by Dubey
(1967), optimal values are p∗1 = 0.16730679 and p∗2 = 0.97366352. Consequently, the
estimation of α using the BTPE, denoted as α̂BTPE, is calculated as

α̂BTPE =
−2.988881

log Yk1 − log Yk2

,

where, k1 = [0.02633648n] or k1 = [0.8326932n] + 1, and k2 = [0.8326932n] or k2 =
[0.8326932n] + 1.
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In addition, for p3 and p4 (0 < p3 < p4 < 1), with the help of (3), a BTPE of λ
which is shown by λ∗ is obtained as follows

λ∗ = exp(w1 log Yk3
+ w2 log Yk4

),

where

w1 =
log(− log p4)

log(− log p4)− log(− log p3)
, w2 =

− log(− log p3)

log(− log p4)− log(− log p3)
.

As per Dubey (1967)’s work in 1967, it is established that λ∗ follows an asymptotic
normal distribution, possessing a mean corresponding to λ and a variance of

Var(λ∗) =
λ2

nk2

{
r∗1

(
k − log k1

k1

)[(
k − log k1

k1

)
+

2 log k1
k2

]
+

r∗2 log
2 k1

k22

}
,

where k = log(− log p4) − log(− log p3), r1 = 1 − p4, r2 = 1 − p3, and r∗i = ri
1−ri

,
ki = − log(1 − ri), for i = 1, 2. In order to minimize the variance of λ∗, the values
of r1 and r2 need to be determined. According to the findings of Dubey (1967), the
recommended values are r1 = 0.39777 and r2 = 0.82111. Therefore, the BTPE of λ
which is shown by λ̂BTPE is obtained as

λ̂BTPE = exp (ŵ1 log Yk3
+ ŵ2 log Yk4

) = exp (0.5556994 log Yk3
+ 0.4443006 log Yk4

) ,

where

ŵ1 =
log(− log(1− r1))

log(− log(1− r1))− log(− log(1− r2))
,

ŵ2 =
− log(− log(1− r2))

log(− log(1− r1))− log(− log(1− r2))
,

and k3 = [0.17889n] or k3 = [0.17889n] + 1, k4 = [0.60223n] or k4 = [0.60223n] + 1.
Therefore, the BTPE of the PDF given by equation (1) and CDF denoted by equation
(2) are obtained through the following relations, respectively.

f̂BTPE(x;α, λ) = α̂BTPEλ̂
α̂BTPE
BTPE x−(α̂BTPE+1) exp

(
−
(
λ̂BTPEx

−1
)α̂BTPE

)
,

F̂BTPE(x;α, λ) = exp

(
−
(
λ̂BTPEx

−1
)α̂BTPE

)
.

The Monte Carlo simulation method of the sample mean is employed to calculate the
mean square error (MSE) for the optimal percentile estimations of the PDF defined in
equation (1) and the CDF represented by equation (2).

2.2 PCE
Assuming that X1, . . . , Xn constitute a random sample from a distribution character-
ized by the CDF denoted as (2), with corresponding order statistics Y1, . . . , Yn, and pi
is the percentile of Yi, then, F (Yi, α, λ) = pi or

α log λ− α log Yi = log(− log pi).
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Estimators of α and λ, denoted as α̂PCE and λ̂PCE respectively, are conducted through
the minimization of the sum given by

n∑
i=1

(α log λ− α log Yi − log(− log pi))
2
,

where pi = i
n+1 . This minimization is performed with respect to α and λ. The resulting

equations are then solved using the Newton-Raphson numerical method.

nα(log λ)2 − log λ

n∑
i=1

log(− log pi) +

(
n∑

i=1

log Yi log(− log pi)− α

n∑
i=1

(log Yi)
2

)
= 0,

n log λ− α

n∑
i=1

log Yi −
n∑

i=1

log(− log pi) = 0.

Upon substituting α̂PCE for α and λ̂PCE for λ in equations (1) and (2), the PCE for
the PDF and the CDF of the IW distribution, as well as the MSE of these estimators,
are derived.

2.3 Maximum likelihood estimation
In this section, considering a random sample X1, . . . , Xn originating from a distribution
characterized by the PDF presented in (1), the MLE for the parameters α and λ,
denoted as α̂MLE and λ̂MLE respectively, are determined through the utilization of a
set of equations and the numerical approach of Newton-Raphson.

n

α
+ n log λ

n∑
i=1

log xi +

n∑
i=1

(
λ

xi

)α

log

(
λ

xi

)
= 0,

λ̂ =

(
n

n∑
i=1

xα̂MLE−1
i

) 1
α̂MLE

.

To obtain α, we use this equation

αi = αi−1 −
g(α)

g′(α)
,

where

g(α) =
n

α
+ n log λ̂

n∑
i=1

log xi +

n∑
i=1

(
λ̂

xi

)α

log

(
λ̂

xi

)
,

and g′(α) is the derivative of g(α) with respect to α. Substituting α̂MLE for α and λ̂MLE
for λ in equations (1) and (2), the MLE for the PDF and CDF of the IW distribution,
as well as the MSE of these estimators, can be determined.

3 Computational analyses
Within this section, we present a Monte Carlo simulation and a numerical example to
illustrate the various estimation methods detailed in the preceding sections.
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3.1 Simulation Studies
In this subsection, initially, employing the first step, X = λ [− logU ]

− 1
α , in which U

follows the Uniform distribution on interval (0,1), and for α = 1.5, 2, 4, = 2, 3, 4, 4.5
and random samples are created, generating as n = 100, 200, , 500. In the second phase,
BTPE, PCE, and MLE of parameters α and λ, as well as the BTPE, PCE, and MLE
of the PDF given by equation (1) and the CDF denoted by equation (2) are computed.
Moving on to the third step, the MSE for the estimations of the PDF (1) and CDF (2)
is determined. These steps, from 1 to 3, are repeated 5000 times, and the average MSE
along with the average estimations of parameters α and λ are calculated. The optimal
estimator is identified as the one with the smallest average MSE. A comparison of the
results from the simulation studies presented in Tables 1 and 2.

Table 1: Estimate the average parameters α , λ and MSE of PDF (1) of the estimation
methods.

AM
n α̂BTPE λ̂BTPE α̂PCE λ̂PCE α̂MLE λ̂MLE f̂PCE f̂MLE f̂BTPE

(α, λ) = (2, 3)
100 4.8367 1.0079 1.4786 2.2954 1.9731 3.6372 4.34874 0.77035 0.48280
200 4.6467 1.0102 1.4728 2.2611 1.9642 3.6005 4.46875 0.79027 0.43818
300 4.5511 1.0110 1.4551 2.2551 1.9634 3.5936 4.48392 0.78236 0.46429
400 4.6769 1.0109 1.4498 2.2295 1.9586 3.5841 4.42212 0.78222 0.46307
500 4.6228 1.0108 1.4518 2.2351 1.9594 3.5835 4.47561 0.77847 0.48618

(α, λ) = (4, 1.5)
100 4.8612 1.1072 2.4553 0.8936 0.3301 1.1672 0.00994 0.02392 0.00931
200 4.2922 1.1492 2.4476 0.8332 0.3299 1.1652 0.01020 0.02798 0.00859
300 4.0555 1.1412 2.4444 0.7956 0.3295 1.1652 0.01051 0.02561 0.00859
400 3.8799 1.1577 2.4409 0.7693 0.3292 1.1656 0.01077 0.02709 0.00793
500 3.7940 1.1510 2.4426 0.7542 0.3293 1.1651 0.01095 0.02778 0.00795

(α, λ) = (1.5, 0.25)
100 2.0932 1.5782 0.1531 1.6962 2.5424 0.2540 0.01412 3.47621 0.00817
200 2.0281 1.5801 0.1093 3.0855 2.5072 0.2534 0.00890 3.14124 0.00808
300 2.0289 1.5799 0.0902 6.4183 2.4900 0.2531 0.00786 2.65151 0.00745
400 2.0029 1.5769 0.0783 24.016 2.4718 0.2526 0.00866 2.53194 0.00816
500 2.0118 1.5771 0.0696 11.233 2.4811 0.2529 0.00862 2.28138 0.00798

(α, λ) = (2, 3.5)
100 4.1289 1.0064 0.9515 2.7688 2.3723 3.8177 0.80433 1.87422 0.12703
200 4.1988 1.0113 0.9424 2.7571 2.3536 3.8049 0.70437 1.89349 0.00981
300 4.0719 1.0101 0.9372 2.7964 2.3449 3.7993 0.60702 1.84600 0.06714
400 4.1220 1.0111 0.9341 2.8412 2.3407 3.7961 0.62749 1.87497 0.95869
500 4.0517 1.0105 0.9313 2.7955 2.3429 3.7972 0.65273 1.89357 0.92011

In these Tables, since the MSE for the BTPE method is the smallest, it was con-
cluded that the BTPE estimation method is superior to the other methods. However,
for certain values of (α, λ), the MLE estimation performed better than the PCE esti-
mation, and in some cases, the PCE estimation outperformed the MLE. These results
are confirmed by Figures 1, 2 and 3.

3.2 Implementation using an actual dataset
In this section, we conduct computations and comparisons for the BTPE, PCE, and
MLE for the PDF and the CDF of the IW distribution, focusing on two distinct real
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Table 2: Estimate the average parameters α , λ and MSE of CDF (2) of the estimation
methods.

AM
n α̂BTPE λ̂BTPE α̂PCE λ̂PCE α̂MLE λ̂MLE F̂PCE F̂MLE F̂BTPE

(α, λ) = (2, 3)
100 4.8367 1.0079 1.4786 2.2954 1.9731 3.6372 0.15101 0.13021 0.03613
200 4.6467 1.0102 1.4728 2.2611 1.9642 3.6005 0.15825 0.07952 0.03390
300 4.5511 1.0110 1.4551 2.2551 1.9634 3.5936 0.15983 0.08319 0.03276
400 4.6769 1.0109 1.4498 2.2295 1.9586 3.5841 0.15672 0.08829 0.03338
500 4.6228 1.0108 1.4518 2.2351 1.9594 3.5835 0.15933 0.08519 0.03356

(α, λ) = (4, 1.5)
100 4.8612 1.1072 2.4553 0.8936 0.3301 1.1672 0.05273 0.07924 0.03038
200 4.2922 1.1492 2.4476 0.8332 0.3299 1.1652 0.03054 0.05521 0.02974
300 4.0555 1.1412 2.4444 0.7956 0.3295 1.1652 0.02117 0.03104 0.01774
400 3.8799 1.1577 2.4409 0.7693 0.3292 1.1656 0.02989 0.04122 0.01507
500 3.7940 1.1510 2.4426 0.7542 0.3293 1.1651 0.02296 0.10221 0.00343

(α, λ) = (1.5, 0.25)
100 2.0932 1.5782 0.1531 1.6962 2.5424 0.2540 0.22450 0.09921 0.00272
200 2.0281 1.5801 0.1093 3.0855 2.5072 0.2534 0.22421 0.09616 0.00240
300 2.0289 1.5799 0.0902 6.4183 2.4900 0.2531 0.22577 0.09368 0.00213
400 2.0029 1.5769 0.0783 24.016 2.4718 0.2526 0.2258 0.09434 0.00215
500 2.0118 1.5771 0.0696 11.233 2.4811 0.2529 0.22661 0.09229 0.01925

(α, λ) = (2, 3.5)
100 4.1289 1.0064 0.9515 2.7688 2.3723 3.8177 0.18144 0.07928 0.01769
200 4.1988 1.0113 0.9424 2.7571 2.3536 3.8049 0.17706 0.10130 0.01735
300 4.0719 1.0101 0.9372 2.7964 2.3449 3.7993 0.18281 0.08311 0.01692
400 4.1220 1.0111 0.9341 2.8412 2.3407 3.7961 0.17867 0.08771 0.01699
500 4.0517 1.0105 0.9313 2.7955 2.3429 3.7972 0.18344 0.09134 0.01726

 
Figure 1: MSE plot with respect to n for (α, λ) = (2, 3).

datasets. The initial dataset, sourced from Lawless (2011), consists of 23 observations
related to ball bearings. The second dataset represents repair times (measured in
hours) for an airborne communication transceiver and was initially studied by Alven
(1964). Both datasets are detailed in Table 3. We individually fit the IW distribution
to each dataset, and the results are presented in Table 4, encompassing the estimated
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Figure 2: MSE plot with respect to n for (α, λ) = (4, 1.5).

 
Figure 3: MSE plot with respect to n for (α, λ) = (2, 3.5).

shape and scale parameters, Kolmogorov-Smirnov (K-S) distances between the fitted
and empirical distribution functions, along with corresponding p-values. The outcomes
from Table 4 affirm the suitability of the IW distribution in effectively capturing the
characteristics of both datasets.

The IW distribution was applied to these datasets using ML, BTP, and PC estima-
tors, assuming that α and λ are unknown. Table 5 provides the parameter estimates
for α and λ, along with the corresponding log-likelihood values. It is noteworthy that
the log-likelihood value is maximized for the BTPE method.

We further assessed the estimation methods using model selection criteria, in-
cluding the Akaike information criterion (AIC), Bayes information criterion (BIC),
and Hannan–Quinn criterion (HQC), defined as follows: AIC = −2 logL(θ) + 2k,
BIC = −2 logL(θ) + k log n and HQC = −2 logL(θ) + 2k log(log n), Here, logL(θ)
represents the log-likelihood, n is the number of observations, and k is the number of
distribution parameters. Smaller values for these criteria indicate a better fit. Table 6
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Table 3: Data Sets.
Data Set Values
Data Set 1 (Ball Bearing) 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96,

54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04, 173.40

Data Set 2 (Repair Time) 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7,
0.7, 0.7, 0.7, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1,
1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5,
2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7,
5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 7.5,
8.8, 9.0, 10.3

Table 4: Shape parameter, scale parameter, K-S, and p-values of the fitted IW models
to Data sets 1 and 2.

Data Set Shape Parameter Scale Parameter K-S P-Value
1 1.834384 48.57896 0.133 0.8103
2 1.011941 1.125229 0.0815 0.9197

Table 5: Estimate of Parameters and Corresponding Log-Likelihood.
Data Set Method Estimate of α Estimate of λ Log-Likelihood

1 MLE 1.834384 48.57896 -240.9375
BTPE 2.303755 36.54517 -115.7821
PCE 3.786125 56.43215 -146.5857

2 MLE 1.011941 1.125229 -132.6268
BTPE 1.034082 2.125229 -113.6210
PCE 1.124321 2.897111 -144.4124

provides the model selection criterion values for the three different estimation meth-
ods. Notably, the BTPE estimators yield the smallest values across all three criteria.
Additionally, Figures 4 and 5 present density plots (fitted PDF versus empirical PDF)
and distribution plots (fitted CDF versus empirical CDF) for the three different esti-
mation methods. The visualizations confirm that the BTPE estimators offer the most
favorable fit.

Table 6: Model selection criteria for the Data sets 1 and 2.
Data Set Method AIC BIC HQC

1 MLE 483.1714 487.4424 490.3136
BTPE 233.5642 237.8352 236.1353
PCE 295.8750 300.1461 298.4461

2 MLE 290.8248 296.4821 294.1948
BTPE 229.2420 234.8993 232.6120
PCE 203.2536 308.9109 306.6236

4 Conclusion
In this study, we conducted a comprehensive comparison of three distinct estimators
the ML estimator, the BTPE estimator, and the PC estimator for both the PDF and
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 Figure 4: Fitted PDFs and the histogram for the three different estimation methods based on Data
set 1.

 Figure 5: Fitted PDFs and the histogram for the three different estimation methods based on Data
set 2.

the CDF of the IW distribution. The performance evaluations involved simulations
and applications to two real datasets. The outcomes consistently demonstrate that the
BTPE estimator outperforms the other estimators across various metrics, including
MSE in simulation studies, log-likelihood values, density plots, and model selection
criteria such as AIC, BIC, and HQC.
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