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Abstract: This study aims to introduce a new multivariate p-chart using a struc-
ture of the multivariate Bernoulli distribution. In this structure, we consider a class
of dependent Bernoulli variables where the conditional success probability is a linear
combination of the last few trials and the original success probability. The efficiency of
the proposed control chart is investigated in terms of the average run length criterion
with two approaches. Also, the issue of misclassification and measurement error in
binary random variables is discussed, and another control chart based on the corrected
proportion of non-conforming products is proposed.

Keywords: Average run length; Misclassification; Multivariate Bernoulli distribution;
Multivariate p-chart; Monte Carlo simulation.
Mathematics Subject Classification (2010): 62Hxx; 62P30

1 Introduction
Control charts are important in statistical quality control to monitor and improve
production processes. Control charts are divided into attributes and variable control
charts, depending on whether the quality characteristic is attributable or measurable.
In some processes, quality characteristics cannot be measured numerically. In such
cases, each inspected item is usually classified as either conforming or non-conforming
to the specifications of that quality characteristic. Quality characteristics of this type
are called attributes. The most common attribute control charts are the p-chart and np-
chart (for binomially distributed processes) and the c and u control charts (for Poisson
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distributed processes). For more discussion, one may refer to Aslam et al. (2018),
Falahnezhad and Oulia (2010), Chukhrova and Johannssen (2019), David (2002), Kooli
and Limam (2011), and Shu and Wu (2010).

In some situations, researchers are interested in the investigation of more than one
correlated quality characteristic simultaneously. In this case, the process is called a
multivariate process, and it would be necessary to use a multivariate control chart.The
use of multivariate control schemes is significantly widespread nowadays. With mod-
ern data-acquisition equipment, sensors and online computers, it is very common to
monitor several quality characteristics simultaneously. In this paper, we focused on
a multivariate attribute control chart. In most of the monitoring processes, the qual-
ity characteristics cannot be measured on a continuous scale, such as manufacturing
processes from industrial settings, healthcare processes or processes from service indus-
tries, and environments of non-manufacturing quality improvement. There are many
works performed in the literature in the field of control charts for multivariate attribute
processes. For more discussion, one may refer to Cozzucoli and Marozzi (2018), Enami
and Torabi (2019), Ali Raza and Aslam (2018), Pascual and Akhundjanov (2020),
Makhdoom and Basikhasteh (2022), Li et al. (2019), and Haridy et al. (2014). Also,
several control charts are provided for multivariate Binomial distribution with different
dependent structures, Li et al. (2014); Topalidou and Psarakis (2009). In this paper,
we consider a class of dependent Bernoulli variables that first introduced by Yang and
Lixin (2017). In this structure, we consider a class of dependent Bernoulli variables
where the conditional success probability is a linear combination of the last few tri-
als and the original success probability. Then, we propose a control chart for this
structure.

We should note that to obtain p-chart or Mp-chart (multivariate p-chart), there is
an essential concern in using these charts: In the product line of the factory, sometimes
products may be falsely detected as confirmed (or non-confirmed) due to imprecise
measurement equipment or human-made mistakes. Because of such a misclassification,
the observed status is different from what it should be. Chen and Yang (2022) discussed
p-chart with measurement error correction. To the best of the authors’ knowledge, there
is no research on the multivariate p-chart with measurement error correction.

The remainder of this paper is organized as follows: In Section 2, introducing a
new statistic D, which is the sum of the counts of nonconforming units of all the
quality characteristics in a sample, the control limits for a structure of the multivariate
Bernoulli distribution are proposed. In Section 3, the efficiency of the proposed control
chart is investigated in terms of the average run length (ARL) criterion with two
approaches. In Section 4, the issue of misclassification and measurement error in binary
random variables is discussed, and then a control chart based on it is proposed. Finally,
some conclusions and suggestions for future research are presented in Section 5.
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2 Structure of the proposed control chart based on
approximation

In a manufacturing process, assume that there are K quality characteristics. Let
t denote the monitoring time. For each time t = 1, 2, ..., T , there are n samples
(i = 1, . . . , n). Let vector Xit = (Xit1, Xit2, ..., XitK) follows a multivariate Bernoulli
distribution, so that Xitj is the number of defects or non-conformities with respect to
quality characteristic j, j = 1, 2, ...,K, where Xitj = 1 represents a non-conforming
product, while Xitj = 0 demonstrates a conforming product. So

Xitj ∼ ber(pj), j = 1, 2, . . . ,K,

where pj is the proportion of the non-conforming products and p = (p1, p2, ..., pK) is a
vector of proportion of the non-conforming products.

It is rational to assume that the non-conformity of a product in terms of a quality
characteristic, may affect its non-conformity in another quality characteristic. There-
fore, let p1 = P (Xit1 = 1) be probability of non-conformity of a chosen product in
terms of the first quality characteristic. By observing Xit1, it is reasonable to consider
that probability of non-conformity of that chosen product in terms of the second qual-
ity characteristic, is a weighted mean between p1 and Xit1(this weight is indicated by
θ). We can assume this pattern up to Kth quality characteristic. Hence, we consider
the following simple model:

p1 = P (Xit1 = 1),

pj = P (Xitj = 1|Fj−1) = θXit(j−1) + (1− θ)p1, j = 2, 3, . . . ,K, (1)

where θ ∈ [0, 1] , and FK = σ{X1, . . . , XK} is the σ-field generated by the random vari-
ables X1, . . . , XK . In other words, the probability of success for each trial conditional
on all previous trials is a linear combination of the previous trial and the probability
of success of the first trial. Define the statistic D as follows

D =

T∑
t=1

Dt, (2)

where Dt =
∑K

j=1

∑n
i=1 Xitj . In fact, D is the number of all non-conforming products.

Theorem 2.1. Suppose that Xit follows a multivariate Bernoulli distribution with
structure defined in (1) and D is the proposed statistic in (2). Then,

D −KTnp1√
KTn

d−→ N

(
0,

p1(1− p1)(1 + θ)

1− θ

)
,

where d−→ denotes the convergence in distribution.

Proof. According to Corollary 2 of Yang and Lixin (2017), when K −→ ∞, we have∑K
j=1 Xitj −Kp1√

K

d−→ N

(
0,

p1(1− p1)(1 + θ)

1− θ

)
, ∀ i = 1, . . . , n, ∀ t = 1, . . . , T.
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On the other hand, it is clear that for each K = 1, 2, ..., the random variables
∑K

j=1 X11j ,

. . . ,
∑K

j=1 XnTj are independent for each n and T . Thus,

D −KTnp1√
KTn

=

∑T
t=1

∑n
i=1

∑K
j=1 Xitj −KTnp1√
KTn

d−→ N

(
0,

p1(1− p1)(1 + θ)

1− θ

)
.

In the following, we suppose that when the process is in-control

p10 = P (Xit1 = 1),

pj0 = P (Xitj = 1|Fj−1) = θXit(j−1) + (1− θ)p10, j = 2, 3, . . .K. (3)

Using the above normal approximation, the traditional Shewhart-type control limits
can be written

LCL=µDin−control
− 3σDin−control

= KTnp10 − 3

√
KTn

p10(1− p10)(1 + θ)

1− θ
,

UCL=µDin−control
+ 3σDin−control

= KTnp10 + 3

√
KTn

p10(1− p10)(1 + θ)

1− θ
, (4)

where µDin−control
and σDin−control

are the mean and the standard deviation of D, when
the process is in-control. Note that, if LCL < 0, then we suppose that LCL = 0.

In practice, usually, the proportion of non-conforming products is not known and
they must be estimated. The vector of the proportion of the non-conforming products
is estimated as follows p̄ = (p̄1, p̄2, ..., p̄K), where

p̄1 =

T∑
t=1

n∑
i=1

Xit1

nT
,

p̄j = θXj−1 + (1− θ)p̄1, j = 2, 3, . . .K.

So, in this case, the control limits are obtained as follows

LCL=µDin−control
− 3σDin−control

= KTnp̄10 − 3

√
KTn

p̄10(1− p̄10)(1 + θ)

1− θ
,

UCL=µDin−control
+ 3σDin−control

= KTnp̄10 + 3

√
KTn

p̄10(1− p̄10)(1 + θ)

1− θ
, (5)

where p̄10 is the estimate of p1 when the process is in-control.

3 The efficiency evaluation of the chart by the ARL
criterion

In this section, the efficiency of the proposed control chart is evaluated using the ARL
criterion. There are two types of ARLs namely the in control (ARL0) and the out-of-
control (ARL1) ARLs Montgomery (2007), which are defined as follows:

ARL0 =
1

α
, ARL1 =

1

1− β
,
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where α and β are Type I error and Type II error, respectively.
When the process is in-control (i.e., pj = pj0), but the control chart shows an out-

of-control sample, then a Type I error occurs. The probability of Type I error can be
obtained as follows:

α = P (D < LCL|pj = pj0) + P (D > UCL|pj = pj0).

On the other hand, when the parameters shift from the in-control values to any other
undesirable values such as p1j , but the control chart shows a sample inside the control
limits, then a Type II error occurs. The probability of the Type II error can be obtained
as follows:

β = P (LCL < D < UCL|pj = pj1).

Here, the ARL1s of the proposed chart are examined for a 5-variable process and a
10-variable process (i.e., K = 5 and K = 10) when ARL0 is fixed at 370. We consider
different values for p10 that are specified as 0.1, 0.4, 0.5, 0.7. For out-of-control state,
we consider p11 = (1 + δ)p10, where δ is a shift value.

In this study, two values for the monitoring time (i.e., T = 10, 30) are assumed,
and four values for the sample size (i.e., n = 5, 10, 15, 20). Tables 1-6 present the
performance of the proposed control chart in terms of ARL1 for different shifts (Table
1 and 3, for θ = 0.1 , Table 2 and 4, for θ = 0.5 and Table 3 and 6, for θ = 0.8). In
these Tables, the values of ARL1 are calculated in two cases: i. by using Theorem 2.1
and ii. by using Monte Carlo simulation (values in brackets) and by using the bellow
algorithm.

Algorithm 3.1. Given k, T , n, p10, θ and δ,
(i) Calculate LCL and UCL by (4),
(ii) Generate the random vector (Xit1, Xit2, ..., XitK) for i = 1, . . . , n and t = 1, 2, ..., T
from (1) with p1 = (1 + θ)p10,

(iii) Compute D =
T∑

t=1

n∑
i=1

K∑
j=1

Xitj based on (2),

(iv) Repeat steps (ii)- (iii) for M times to obtain D1, . . . , DM ,

(v) Compute β =
1

M

M∑
i=1

I(LCL < Di < UCL),

(vi) Compute ARL1 =
1

1− β
.

These results are obtained using R software. The conclusions made based on the
results in Tables 1-6 are summarized as follows
i. The obtained results show that forθ < 0.5 (especially for δ > 0.03) both approaches,
almost have the same results, even for small values of k.In the other words, for θ < 0.5
we can calculate control limits by using approximately normal for every value of k.
ii. Our results showed that for θ > 0.5, the two approaches have not the same results.
Therefore, for θ > 0.5 and small values of k, we recommend to use the Monte Carlo
approach.
iii. For the constant values of n, p, T , δ and θ with increasing K the performance of the
proposed chart is better. For example, if θ = 0.1, δ = 0.03, n = 5, T = 30, p = 0.1 and
K = 5 then ARL1 = 252 and if θ = 0.1, δ = 0.03, n = 5, T = 30, p = 0.1 and K = 10
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then ARL1 = 203.
iv-For the constant values of n, p, T, k and δ with decreasing θ the performance of the
proposed chart is better. For example, if K = 5, δ = 0.03, n = 5, T = 30, p = 0.7 and
θ = 0.1 then ARL1 = 35 and if K = 5, δ = 0.03, n = 5, T = 30, p = 0.7 and θ = 0.5
then ARL1 = 99.
v-In some cases, the out-of-control process may not be detected (ARL1 > ARL0).
These modes have been indicated by the expression “...”.

Table 1: The ARL1 of the proposed control chart, when K = 5, θ = 0.1 and ARL0 =
370.

(p10, T )
δ n (0.1, 10) (0.1, 30) (0.4, 10) (0.4, 30) (0.5, 10) (0.5, 30) (0.7, 10) (0.7, 30)

0.03 5 297(....) 252(....) 217(....) 114(....) 187(....) 83(....) 119(....) 35(40)
10 273(....) 203(....) 152(160) 60(64) 118(120) 39(40) 58(62) 13(13)
15 252(261) 168(175) 114(120) 38(42) 83(85) 23(25) 35(42) 7(7)
20 233(245) 143(150) 89(92) 26(28) 62(66) 15(16) 24(28) 4(4)

0.07 5 184(187) 104(106) 65(65) 17(18) 44(48) 10(10) 17(20) 3(3)
10 134(136) 58(58) 29(31) 6(6) 18(20) 3(3) 5(5) 1(1)
15 104(106) 38(42) 17(18) 3(3) 10(10) 2(2) 3(3) 1(1)
20 83(86) 28(29) 11(12) 2(2) 6(7) 1(1) 2(2) 1(1)

0.1 5 121(124) 53(55) 28(28) 6(6) 17(19) 3(3) 5(6) 1(1)
10 76(77) 25(26) 11(11) 2(2) 6(7) 1(1) 2(2) 1(1)
15 53(54) 15(16) 6(6) 1(1) 3(3) 1(1) 1(1) 1(1)
20 40(42) 10(13) 1(3) 2(2) 1(1) 3(2) 1(1) 1(1)

0.15 5 62(60) 9(9) 2(2) 5(5) 1(1) 1(1) 2(1) 1(1)
10 32(31) 8(8) 3(8) 1(1) 2(2) 1(1) 1(1) 1(1)
15 20(22) 5(5) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1)
20 14(16) 3(3) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

0.2 5 34(35) 9(10) 4(4) 1(1) 2(2) 1(1) 1(1) 1(1)
10 16(16) 4(4) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1)
15 9(10) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
20 6(7) 1(2) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

4 Misclassification
In practice, variables are often mismeasured. That is, we may encounter measurement
errors in continuous variables or misclassification in discrete variables. To explain more
about the concept of misclassification, we suppose that Xitj is the true situation of the
product, which is unknown and X∗

itj is the observed status (or surrogate version of
Xitj) of the product that is recorded by factory’s staff. The relationship between X∗

itj

and Xitj can be characterized as follows

πkl = P (X∗
itj = k|Xitj = l), k, l = 0, 1.

This is clear that, π01 (or π10) indicates the probability that a non-conforming (or
conforming) product is falsely recorded as conforming (or non-conforming). According
to Chen and Yi (2021) π11 and π00, are called classification probability and π01 and
π10 are called misclassification probability.
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Table 2: The ARL1 of the proposed control chart, when K = 5, θ = 0.5 and ARL0 =
370.

(p10, T )
δ n (0.1, 10) (0.1, 30) (0.4, 10) (0.4, 30) (0.5, 10) (0.5, 30) (0.7, 10) (0.7, 30)

0.03 5 314(....) 291(....) 283(....) 199(....) 269(....) 163(....) 227(....) 99(....)
10 302(....) 263(....) 235(....) 133(....) 207(....) 100(....) 142(....) 46(....)
15 291(....) 239(....) 199(....) 97(....) 163(184) 68(75) 99(143) 27(52)
20 281(293) 219(224) 171(180) 74(86) 137(142) 50(61) 74(80) 18(24)

0.07 5 231(258) 170(182) 137(140) 53(56) 110(115) 35(36) 62(62) 12(12)
10 197(200) 119(121) 79(81) 23(24) 56(58) 13(13) 23(23) 4(4)
15 170(173) 89(92) 52(55) 13(13) 35(35) 7(7) 12(13) 2(2)
20 149(150) 70(70) 38(38) 8(8) 24(24) 5(5) 7(7) 1(1)

0.1 5 177(185) 108(119) 76(80) 22(25) 55(56) 13(13) 25(25) 4(4)
10 135(141) 64(67) 36(40) 8(10) 23(25) 4(4) 8(8) 1(1)
15 108(112) 44(49) 22(27) 4(5) 13(13) 2(2) 4(4) 1(1)
20 89(93) 32(35) 15(18) 3(3) 8(10) 2(2) 2(2) 1(1)

0.15 5 112(116) 52(54) 31(31) 7(8) 20(24) 4(4) 7(8) 1(1)
10 73(75) 26(27) 12(12) 2(2) 7(9) 1(1) 2(2) 1(1)
15 52(53) 16(16) 7(7) 1(1) 4(4) 1(1) 1(1) 1(1)
20 40(41) 11(11) 4(4) 1(1) 2(2) 1(1) 1(1) 1(1)

0.2 5 71(74) 27(28) 14(15) 3(3) 9(10) 2(2) 2(2) 1(1)
10 41(43) 12(14) 56(57) 1(1) 2(2) 1(1) 1(1) 1(1)
15 27(29) 7(8) 3(3) 1(1) 2(2) 1(1) 1(1) 1(1)
20 20(20) 5(5) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1)

Table 3: The ARL1 of the proposed control chart, when K = 5, θ = 0.8 and ARL0 =
370.

(p10, T )
δ n (0.1, 10) (0.1, 30) (0.4, 10) (0.4, 30) (0.5, 10) (0.5, 30) (0.7, 10) (0.7, 30)

0.03 5 322(....) 313(....) 327(....) 283(....) 330(....) 268(....) 347(....) 227(....)
10 317(....) 302(....) 304(....) 234(....) 296(....) 206(....) 276(....) 141(....)
15 313(....) 291(....) 283(....) 199(....) 268(....) 166(....) 227(....) 99(....)
20 309(....) 281(....) 265(....) 171(....) 245(....) 173(....) 190(....) 74(....)

0.07 5 260(....) 231(....) 232(....) 136(....) 220(....) 110(....) 196(....) 62(....)
10 245(....) 197(....) 174(....) 78(....) 149(....) 56(....) 100(....) 23(....)
15 231(....) 170(....) 136(....) 52(....) 109(....) 35(....) 62(....) 12(86)
20 218(....) 149(....) 111(....) 38(....) 85(....) 24(....) 42(....) 7(25)

0.1 5 220(365) 177(358) 168(347) 76(312) 150(324) 55(307) 118(232) 25(96)
10 196(324) 136(309) 107(268) 36(291) 85(279) 23(289) 47(195) 8(25)
15 177(301) 108(294) 67(259) 22(250) 55(223) 13(90) 25(157) 4(6)
20 161(270) 89(254) 57(242) 15(101) 39(207) 8(33) 15(121) 2(3)

0.15 5 164(350) 112(349) 95(327) 31(198) 78(307) 20(227) 52(199) 7(20)
10 133(319) 73(302) 49(298) 12(70) 35(278) 7(22) 15(165) 2(2)
15 112(283) 52(277) 31(265) 7(21) 20(263) 4(6) 7(20) 1(1)
20 95(268) 40(257) 21(253) 4(8) 13(99) 2(3) 4(7) 1(1)

0.2 5 121(315) 71(309) 55(269) 14(25) 42(186) 9(37) 24(65) 2(3)
10 90(221) 41(296) 24(254) 5(8) 16(136) 3(4) 5(14) 1(1)
15 71(213) 27(273) 14(105) 3(4) 7(35) 2(2) 2(2) 1(1)
20 58(201) 20(172) 9(37) 2(2) 5(13) 1(1) 2(1) 1(1)
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Table 4: The ARL1 of the proposed control chart, when K = 10, θ = 0.1 and ARL0 =
370.

(p10, T )
δ n (0.1, 10) (0.1, 30) (0.4, 10) (0.4, 30) (0.5, 10) (0.5, 30) (0.7, 10) (0.7, 30)

0.03 5 273(232) 203(190) 152(161) 60(58) 118(132) 39(38) 58(59) 12(13)
10 233(198) 143(130) 89(93) 26(27) 62(68) 15(16) 24(28) 4(4)
15 203(159) 108(93) 60(58) 15(15) 39(39) 8(8) 13(13) 2(2)
20 179(147) 85(81) 44(43) 10(10) 27(27) 5(5) 8(8) 2(2)

0.07 5 134(110) 59(58) 29(30) 6(6) 18(19) 3(3) 5(5) 1(1)
10 63(74) 27(27) 11(11) 2(2) 6(6) 1(1) 2(2) 1(1)
15 60(53) 16(17) 6(6) 1(1) 3(3) 1(1) 1(1) 1(1)
20 43(40) 11(11) 4(4) 1(1) 2(2) 1(1) 1(1) 1(1)

0.1 5 76(74) 25(25) 11(11) 2(2) 6(7) 1(1) 2(2) 1(1)
10 40(36) 10(10) 4(4) 1(1) 2(2) 1(1) 1(1) 1(1)
15 25(24) 6(5) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1)
20 18(17) 4(4) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1)

0.15 5 32(32) 8(8) 3(3) 1(1) 2(2) 1(1) 1(1) 1(1)
10 14(14) 3(3) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
15 8(8) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
20 5(5) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

0.2 5 16(16) 4(4) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1)
10 6(6) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
15 4(4) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
20 2(2) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

Suppose, when the process is in-control, p∗j0 = P (X∗
itj = 1), j = 1, 2, ...,K, and

q∗j0 = 1-p∗j0. Using the technique of the law of total probability, they can be written as

p∗j0 = π11pj0 + π10qj0,

q∗j0 = π01pj0 + π00qj0, (6)

where pj0, j = 1, 2, ...,K, is introduced in (3), and qj0 = 1-pj0. The matrix form of (6)
is given by [

p∗j0
q∗j0

]
= Π

[
pj0
qj0

]
, (7)

where Π =
[
π11 π10
π01 π00

]
is the 2×2 (mis)classification matrix and π11 + π10 = 1 and

π01 + π00 = 1. Note that the case of no misclassification corresponds to having Π = I,
the identity matrix.

We assume that Π has the spectral decomposition Π = ΩMΩ−1, where M is the
diagonal matrix with diagonal elements being the eigenvalues of Π, and Ω is the cor-
responding matrix of eigenvectors (Chen and Yi, 2021).

Since our main target is to monitor p10, from the equations (6), we observe that
when π10 ̸= 0 or π01 ̸= 0, p∗10 and q∗10 are different from p10 and q10. Therefore, with
the availability of X∗

it1s, the estimate of sample proportion p̄∗10 =
∑T

t=1

∑n
i=1 X∗

it1

nT has
bias for p̄10 and the corresponding control limits, determined by (5) with p̄∗10 replaced
by p̄10 may incur wrong detection. From (7) have

Π−1

[
p∗j0
q∗j0

]
=

[
pj0
qj0

]
.
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Table 5: The ARL1 of the proposed control chart, when K = 10, θ = 0.5 and ARL0 =
370.

(p10, T )
δ n (0.1, 10) (0.1, 30) (0.4, 10) (0.4, 30) (0.5, 10) (0.5, 30) (0.7, 10) (0.7, 30)

0.03 5 302(369) 263(363) 235(315) 133(217) 208(335) 100(163) 142(360) 46(72)
10 281(358) 219(322) 171(256) 74(134) 137(238) 50(70) 74(130) 18(24)
15 263(333) 186(227) 133(219) 48(70) 100(148) 30(42) 46(75) 9(11)
20 247(331) 161(208) 107(180) 34(51) 76(119) 21(27) 31(43) 6(6)

0.07 5 170(202) 119(135) 79(124) 23(28) 56(92) 13(16) 23(36) 4(4)
10 150(160) 70(73) 38(40) 8(9) 24(26) 5(5) 7(8) 2(2)
15 119(120) 47(49) 23(23) 5(5) 13(13) 3(3) 4(4) 1(1)
20 98(101) 35(35) 15(15) 3(3) 9(9) 1(1) 2(2) 1(1)

0.1 5 135(137) 65(66) 36(36) 8(8) 23(23) 4(4) 8(8) 1(1)
10 89(91) 32(32) 15(15) 3(3) 8(8) 2(2) 2(2) 1(1)
15 64(66) 20(21) 8(8) 2(2) 4(4) 1(1) 1(1) 1(1)
20 49(50) 13(13) 5(5) 1(1) 3(2) 3(3) 1(1) 1(1)

0.15 5 73(75) 26(27) 12(13) 2(2) 7(7) 1(1) 2(2) 1(1)
10 40(41) 11(12) 4(4) 1(1) 2(2) 1(1) 1(1) 1(1)
15 26(28) 6(7) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1)
20 18(18) 4(4) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1)

0.2 5 41(42) 1212() 5(5) 1(1) 3(3) 1(1) 1(1) 1(1)
10 20(21) 5(5) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1)
15 12(12) 3(3) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
20 8(8) 2(2) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)

Table 6: The ARL1 of the proposed control chart, when K = 10, θ = 0.8 and ARL0 =
370.

(p10, T )
δ n (0.1, 10) (0.1, 30) (0.4, 10) (0.4, 30) (0.5, 10) (0.5, 30) (0.7, 10) (0.7, 30)

0.03 5 317(....) 302(....) 303(....) 235(....) 297(....) 207(....) 276(....) 143(....)
10 309(....) 281(....) 265(....) 171(....) 245(....) 137(....) 190(....) 74(....)
15 302(....) 263(....) 234(....) 132(....) 207(....) 100(....) 142(....) 45(241)
20 295(....) 247(....) 209(....) 106(....) 178(....) 76(....) 110(....) 31(135)

0.07 5 245(....) 196(....) 174(....) 79(....) 149(295) 56(257) 100(131) 23(86)
10 218(....) 149(....) 111(209) 38(141) 85(136) 24(79) 42(68) 7(13)
15 197(....) 19(....) 79(196) 23(74) 56(115) 13(30) 23(28) 4(5)
20 178(....) 98(....) 59(226) 15(36) 40(95) 7(17) 14(21) 2(3)

0.1 5 196(367) 135(348) 107(315) 36(168) 85(264) 23(80) 47(201) 8(14)
10 161(340) 89(293) 57(307) 14(37) 39(182) 8(15) 15(45) 2(2)
15 135(299) 64(260) 36(147) 8(14) 23(73) 4(6) 8(13) 1(1)
20 116(248) 49(227) 25(78) 5(8) 15(39) 3(3) 5(6) 1(1)

0.15 5 133(305) 73(256) 49(89) 12(28) 35(58) 7(12) 15(54) 2(2)
10 95(298) 40(112) 21(64) 4(6) 13(31) 2(3) 4(5) 1(1)
15 73(251) 26(77) 12(27) 2(3) 7(12) 1(1) 2(2) 1(1)
20 58(208) 18(44) 8(15) 2(2) 4(6) 1(1) 1(1) 1(1)

0.2 5 90(259) 41(126) 25(86) 5(8) 16(43) 3(3) 5(9) 1(1)
10 58(200) 20(52) 9(19) 2(8) 5(8) 1(1) 2(1) 1(1)
15 41(86) 12(26) 5(7) 1(1) 3(8) 1(1) 1(1) 1(1)
20 31(92) 8(14) 3(4) 1(1) 2(2) 1(1) 1(1) 1(1)

Consequently

p10 =
π00p

∗
10 − π10q

∗
10

π11π00 − π10π01
=

(1− π01)p
∗
10 − π10q

∗
10

(1− π10)(1− π01)− π10π01
.



A multivariate p-chart with a suggestion for measurement error correction 128

Suppose for a particular state, π00 = π11 = π and π10 = π01 = 1− π, then

p10 =
p∗10 − π10

1− π10π01
.

So, the “corrected” proportion of non-conforming products, denoted as p∗∗10, is defined
as follows

p∗∗10 =
p∗10 − π10

1− π10π01
. (8)

Under (4), the corrected LCL and UCL are given by

LCL∗∗=µDin−control
− 3σDin−control

= KTnp∗∗10 − 3

√
KTn

p∗∗10(1− p∗∗10)(1 + θ)

1− θ
,

UCL∗∗=µDin−control
+ 3σDin−control

= KTnp∗∗10 + 3

√
KTn

p∗∗10(1− p∗∗10)(1 + θ)

1− θ
. (9)

From Chen and Yang (2022) we can write the “corrected” random variable

X∗∗
it1 =

X∗
it1 − π10

1− π10π01
.

Thus, the “corrected” sample proportion is calculated as follows

p̄∗∗10 =

∑T
t=1

∑n
i=1 X

∗∗
it1

nT
.

In this case, the control limits are estimated as follows:

LCL∗∗=KTnp̄∗∗10 − 3

√
KTn

p̄∗∗10(1− p̄∗∗10)(1 + θ)

1− θ
,

UCL∗∗=KTnp̄∗∗10 + 3

√
KTn

p̄∗∗10(1− p̄∗∗10)(1 + θ)

1− θ
. (10)

5 Conclusions and future research
In the present article, a new control chart for a structure of the multivariate Bernoulli
distribution was first introduced (multivariate p-chart), then the efficiency of this chart
was evaluated in terms of out-of-control ARL (when ARL0 remains constant). In
applications, measurement error exists due to imprecise operation systems or human-
made mistakes, and ignoring measurement error effects may cause the wrong detection.
To the best of the authors’ knowledge, there is no research on the multivariate p-chart
with measurement error correction. In this paper, the issue of misclassification and
measurement error in binary random variables was discussed and then, a control chart
based on it was proposed. We should note that measurement errors are parameters,
and in application, they have to be estimated. We suggest that in future research, these
parameters will be estimated, and then will be evaluated the efficiency of the proposed
control chart. Also, the correlation between monitoring times can be the next research
project in the future.
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