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Abstract: Since the binomial distribution is discrete, finding accurate confidence inter-
vals for its parameters is not easily achievable. Many approximate confidence intervals
have been suggested for the binomial distribution’s ratio parameter thus far. As we
know, these confidence intervals have not been compared based on the maximum cov-
erage probabilities. This article aims to evaluate six widely used confidence intervals
for the binomial distribution’s ratio parameter, focusing on their accurate maximum
coverage probabilities criterion.
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1 Introduction
In everyday life, we encounter many experiments that can have only two results. Exam-
ples include tossing a coin, medical tests with negative or positive outcomes, acceptance
in an exam, penalty shots in football games, and all questions with yes or no answers.
One of these two results is considered a success. As we know, human beings are perfec-
tionists who continually seek success and advancement. The ability to take risks and
make choices is essential for achieving success. Making a choice can lead to success or
failure, and thus, most of the time, we are unconsciously subjected to a Bernoulli trial.
Therefore, estimating the probability of success in a Bernoulli trial would greatly aid
precise decision-making. The Bernoulli random variable is a special case of the bino-
mial random variable, and the binomial distribution is a discrete distribution for which
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the production of accurate confidence intervals is very difficult. Until now, several ap-
proximate confidence intervals have been introduced for the binomial proportion. For
example, see Clopper and Pearson (1934), Blyth and Still (1983), Kabaila and Lloyd
(1997), Brown et al. (2002), Ross (2003), Wang (2007), Guan (2011) and Garthwaite
et al. (2024).

Among others, Wang (2007) proposed a methodology to compute the exact confi-
dence coefficient and maximum coverage probabilities of binomial confidence intervals
and conducted a comparison of some binomial confidence intervals based on the exact
confidence coefficient criterion. Also, based on the algorithm presented by Blyth and
Still (1983) to find the optimal confidence interval for the proportion of the binomial
distribution in the single-sample case, Peer and Azriel (2023) proposed an algorithm to
find optimal confidence intervals for the difference of the proportions of two samples.
Furthermore, Sotres-Ramos et al. (2024) assessed the effectiveness of some binomial
confidence intervals, aiming to evaluate each interval and make comparisons based on
their average coverage probabilities and average expected lengths. In this paper, three
confidence intervals considered by Brown et al. (2002), two confidence intervals con-
sidered by Blyth and Still (1983), and one considered by Wang (2007) are compared
based on the maximum coverage probabilities criterion, proposed by Wang (2007).

The organization of the paper is as follows: Section 2 introduces the Wang (2007)
technique for computing accurate maximum coverage probabilities for binomial confi-
dence intervals. Section 3 discusses prominent binomial proportion confidence intervals.
In Section 4, we conduct a comparison to evaluate confidence intervals using the accu-
rate maximum coverage probabilities criterion. Lastly, we present our conclusions in
Section 5.

2 Methodology
Suppose that X is a binomial random variable with probability mass function fp(x),
where p ∈ Ω = (0, 1) is an unknown parameter and x ∈ S = {0, 1, . . . , n}. If(
L(X), U(X)

)
is a confidence interval for p, its coverage probability is equal to Pp

(
p ∈(

L(X), U(X)
))

, that is, the probability that the random interval
(
L(X), U(X)

)
in-

cludes true value of p. In continuous distributions, coverage probability function for
all points of parameter space Ω might be the same, but in discrete distributions, cov-
erage probability changes with the changes of unknown parameter p in Ω. Therefore,
finding the accurate maximum coverage probabilities for parameters of these distribu-
tions is difficult.

In this section, we review the methodology proposed by Wang (2007) to calculate the
accurate maximum coverage probabilities of confidence intervals for the ratio parameter
of the binomial distribution, under the conditions of Assumption 1.

Assumption 1. For the confidence interval
(
L(X), U(X)

)
, if X1 < X2, then L(X1) <

L(X2) and U(X1) < U(X2), that is L(x) and U(x) should be increasing functions of
x.

For a confidence interval
(
L(X), U(X)

)
, there exist 2(n+1) endpoints, denoted by

L(0), L(1), . . . , L(n), U(0), U(1), . . . , U(n),
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corresponding to X = 0, . . . , n. Sorting these 2(n+1) endpoints increasingly, we define
vi as the ith point in sorted mode, for i = 1, . . . , 2(n+ 1). We also define

wi =


vi, if 0 < vi < 1,

0, if vi ≤ 0,

1, if vi ≥ 1,

and for each p ∈ (vi, vi+1), functions k0 and k1 were defined as

k0(p) = min{x | U(x) > p},
k1(p) = max{x | L(x) < p}.

In addition, let

ai = r

(
k0

(
wi + wi+1

2

)
, k1

(
wi + wi+1

2

))
,

where r(m0,m1) =
1

1+M and

M =

((
n
m1

)
(n−m1)(
n
m0

)
m0

) 1
m1−m0+1

.

Theorem 2.1. If the confidence interval
(
L(X), U(X)

)
satisfies conditions of Assump-

tion 1, then the maximum coverage probabilities of
(
L(X), U(X)

)
is the maximum of

Pp

(
p ∈

(
L(X), U(X)

))
, where p ∈ S1 and

S1 = {w1, w2, . . . , w2n+2, a1, . . . , a2n+1}.

Proof. See Wang (2007).

Based on Theorem 2.1, the steps for calculating the maximum coverage probabilities
are as follows:
1. Investigate whether the confidence interval fulfills Assumption 1.
2. Consider the endpoints of intervals corresponding to X = 0, . . . , n, which are located
in the parameter space.
3. Obtain the points a1, . . . , a2n+1 as stated in Theorem 2.1.
4. Calculate the coverage probabilities corresponding to the points obtained in steps 2
and 3, as well as the upper and lower bounds of the parameter space. The maximum
coverage probabilities for the interval is the maximum of these values.

3 Confidence intervals
Let k be the upper α

2 quantile of standard normal distribution and X̃ = X + k2

2 ,
ñ = n + k2, p̃ = X̃

ñ , q̃ = 1 − p̃, p̂ = X
n and q̂ = 1 − p̂. Six confidence intervals that

satisfy conditions of Assumption 1 are introduced in Sections 3.1-3.6.
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3.1 Exact interval
Clopper and Pearson (1934) derived a method that computes exact binomial confidence
interval boundaries based on cumulative binomial probabilities. Also known as the
“exact method”, this conservative approach tends to produce wide intervals, thereby
reducing the risk of overconfidence but increasing the likelihood of including the true
population proportion. Explicit form of this confidence interval was obtained by Blyth
and Still (1983) as

CICP (X) =

((
1 +

(n−X + 1)F1

X

)−1

,

(
1 +

n−X

(X + 1)F2

)−1
)
,

where F1 = F(1−α
2 ;2n−2X+2,2X), F2 = F(α

2 ;2X+2,2n−2X), and F(α;r1,r2) is the αth upper
quantile of F distribution with r1 and r2 degrees of freedom.

3.2 Wald interval
Wald interval has been proposed as an interval based on normal approximation by
utilizing the sample proportion as an estimator for the true population proportion (p).
This method assumes a large sample size and symmetry around the mean. However, it
produces inaccurate confidence intervals for small sample sizes or extreme proportion
values. The 1− α Wald Confidence interval for p is (see Blyth and Still, 1983)

p̂± zα/2
√

(p̂(1− p̂))/n.

3.3 Wilson interval
The Wilson interval has been introduced as a compromise between exact and normal
approximation methods. The Wilson score interval uses a quadratic equation to de-
termine the interval boundaries while correcting for certain biases found in the other
methods. It has been widely accepted as a robust method for computing binomial con-
fidence intervals. The 1 − α Wilson confidence interval for parameter p is (see Brown
et al., 2002)

CIW (X) =

(
p̃− k

√
n

n+ k2

√
p̂q̂ +

k2

4n
, p̃+

k
√
n

n+ k2

√
p̂q̂ +

k2

4n

)
.

3.4 Agresti-Coull interval
The Agresti-Coull interval has been suggested as a modification of the Wald interval by
adding “success” and “failure” counts to the sample, which creates an adjusted interval.
This method offers more accurate interval estimates in comparison to the Wald interval
but may still generate poor results for small or extreme data. The 1−α Agresti-Coull
confidence interval for p is (Brown et al., 2002)

CIAC(X) =
(
p̃− k(p̃q̃)

1
2 ñ− 1

2 , p̃+ k(p̃q̃)
1
2 ñ− 1

2

)
.
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3.5 Likelihood ratio interval
The 1 − α likelihood ratio (LR) confidence interval for parameter p is (Brown et al.,
2002)

CIΛn
(X) =

{
p :

pX(1− p)n−X(
X
n

)X (
1− X

n

)(n−X)
> e−

k2

2

}
.

3.6 Jeffreys interval
The Jeffreys interval has been introduced based on a Bayesian method, which works by
computing the posterior distribution of the binomial proportion using a non-informative
prior distribution. The Jeffreys interval has been widely adopted due to its robustness
against different sample sizes and proportions, and its accurate coverage probabilities.
The 1− α Jeffreys confidence interval for parameter p is

CIJ(X) =
(
β(α

2 ,X+ 1
2 ,n−X+ 1

2 )
, β(1−α

2 ,X+ 1
2 ,n−X+ 1

2 )

)
,

where β(α,s1,s2) shows the αth upper quantile of β(s1,s2) distribution (see Wang, 2007).

4 Comparison of confidence intervals
As noted in the introduction, Wang (2007) conducted a comparison between binomial
confidence intervals based on the exact confidence coefficient criterion. For a given
confidence interval, if there exists even one point in the parameter space such that its
corresponding coverage probability equals zero, then the confidence coefficient is also
zero. For example, the confidence coefficient of the Jeffreys interval is zero (see Wang,
2007). Therefore, this criterion cannot be used to compare all confidence intervals.
Additionally, comparing confidence intervals based on the confidence coefficient is very
conservative because the coverage probability might be very small at one point but
close to the nominal level for other points in the parameter space. Wang (2007) showed
that the optimal order of confidence intervals between Wilson, LR, Agresti-Cool, and
Jeffreys intervals based on the confidence coefficient is as follows (for n > 30): Agresti-
Cool, LR, Wilson, and Jeffreys intervals. On the other hand, Sotres-Ramos et al. (2024)
conducted a comparison between Wald, exact, Wilson, and Jeffreys intervals in terms
of the average coverage probabilities and showed that the optimal order of confidence
intervals is as follows: exact, Wilson, Jeffreys, and Wald intervals.

Here we compare the confidence intervals for the proportion parameter of the bino-
mial distribution based on the accurate maximum coverage probabilities criterion. To
make these comparisons more tangible, we have first plotted the coverage probability
functions of 95% confidence intervals for n = 5 in Figure 1.

Based on the figure, the optimal confidence intervals in terms of the minimum cov-
erage probabilities are as follows: exact, Agresti-Coull, Wilson, LR, Jeffreys, and Wald
intervals. Additionally, the optimal intervals based on the maximum coverage proba-
bilities are as follows: exact, Agresti-Coull, Wilson, LR, Jeffreys, and Wald intervals.

Table 1 displays the maximum coverage probabilities and average lengths of the
intervals for various sample sizes. As the table illustrates, until a sample size of 30,
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Figure 1: Coverage probability functions of 95% confidence intervals for n = 5.
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based on the length of the intervals, confidence intervals in ascending order are: LR,
Jeffreys, Wald, Wilson, Agresti-Coull, and exact intervals. However, for larger sample
sizes, the intervals do not differ significantly in terms of average lengths. Additionally,
the maximum coverage probabilities of Wald intervals for different sample sizes are
lower than the corresponding maximum coverage probabilities of Jeffreys intervals. In
contrast, the maximum coverage probabilities of Wilson, Agresti-Coull, exact, and LR
intervals for various sample sizes remain constant and equal to 1.000. Consequently,
the optimality of confidence intervals depends on the selected criterion for comparison,
and by changing the comparison criterion, the order of optimality of the intervals also
changes.

Table 1: Maximum coverage probabilities (M.C.) and average lengths (A.L.) of confi-
dence intervals (C.I.) for different sample sizes.

Jeffreys Exact LR
n A.L. M.C. A.L. M.C. A.L. M.C.
5 0.560 0.937 0.678 1.000 0.552 1.000
20 0.323 0.964 0.366 1.000 0.322 1.000
30 0.269 0.965 0.299 1.000 0.268 1.000
50 0.212 0.962 0.231 1.000 0.212 1.000
70 0.180 0.962 0.194 1.000 0.180 1.000
90 0.160 0.962 0.170 1.000 0.160 1.000
100 0.152 0.961 0.161 1.000 0.152 1.000
300 0.088 0.959 0.092 1.000 0.088 1.000
600 0.063 0.959 0.064 1.000 0.063 1.000
900 0.051 0.958 0.052 1.000 0.051 1.000

Wilson A-Coull Wald
n A.L. M.C. A.L. M.C. A.L. M.C.
5 0.558 1.000 0.606 1.000 0.520 0.937
20 0.325 1.000 0.341 1.000 0.324 0.959
30 0.271 1.000 0.281 1.000 0.270 0.957
50 0.213 1.000 0.218 1.000 0.213 0.955
70 0.181 1.000 0.185 1.000 0.181 0.953
90 0.160 1.000 0.163 1.000 0.160 0.956
100 0.152 1.000 0.154 1.000 0.152 0.956
300 0.088 1.000 0.089 1.000 0.088 0.955
600 0.063 1.000 0.063 1.000 0.063 0.954
900 0.051 1.000 0.051 1.000 0.051 0.954

5 Conclusion
According to Section 4, the optimality of confidence intervals depends on the selected
criterion for comparison, and by changing the comparison criterion, the order of opti-
mality of the intervals also changes. In terms of the maximum coverage probabilities
criterion, the Jeffreys confidence interval is better than the Wald confidence interval,
and both have lower optimality compared to other intervals. However, comparing the
optimality of the Wilson, Agresti-Coull, exact, and LR intervals in terms of maximum
coverage probabilities is not possible; they should be compared using another crite-
rion, such as the confidence coefficient or average coverage probabilities. For example,
based on the confidence coefficient criterion, the Agresti-Cool confidence interval is
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better than the LR confidence interval (see Wang, 2007), or based on the average cov-
erage probabilities criterion, the exact confidence interval is better than the Wilson
confidence interval (see Sotres-Ramos et al., 2024).
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