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Abstract: The frequency and severity of extreme events have increased in recent years
in many areas. In the context of risk management for insurance companies, reinsurance
provides a safe solution as it offers coverage for large claims. This paper investigates
the impact of dependent extreme losses on ruin probabilities under four types of rein-
surance: excess of loss, quota share, largest claims, and ecomor. To achieve this, we
use the dynamic GARCH-extreme value theory-copula combined model to fit the spe-
cific features of claim data and provide more accurate estimates than classical models.
We derive the surplus processes and asymptotic ruin probabilities under the Cramer-
Lundberg risk process. Using a numerical example with real-life data, we illustrate
the effects of dependence and the behavior of reinsurance strategies for both insur-
ers and reinsurers. This comparison includes risk premiums, surplus processes, risk
measures, and ruin probabilities. The findings show that the GARCH-extreme value
theory-copula model mitigates the over- and under-estimation of risk associated with
extremes and lowers the ruin probability for heavy-tailed distributions.
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1 Introduction
Risk analysis and control became more significant and open to improvements due to
the globally increasing frequency and severity of catastrophic events Kratz (2019).

∗Corresponding author: ab_bazyari@pgu.ac.ir



The impact of reinsurance strategies on the ruin probability 58

examples of such events in recent history include the Covid-19 pandemic, the 2008
global financial crisis, and 21st-century earthquakes and wildfires. By disregarding
extreme losses and treating them as outliers, insurance companies inadvertently expose
themselves to systematic and insolvency risks. This can result in uncontrollably high
premiums or even lead to the exclusion of such risks during the underwriting process.
Catastrophic losses play a substantial role in the credibility of risk modeling, and as
such, they are typically covered by reinsurance. A reliable risk model for controlling
the ruin process cannot be established without examining the heavy tails and taking
reinsurance contracts into account. These models serve as the foundation for premium
and reserve calculations, as well as for making reinsurance decisions.

Extreme value theory (EVT) has gained popularity in financial literature as a suit-
able model for right-skewed and heavy-tailed data Embrechts et al. (1999). The pre-
ferred approach in EVT, known as the peaks over threshold (POT), utilizes the gener-
alized Pareto distribution (GPD) to model the data exceedances over a predetermined
threshold level. While the majority of EVT literature focuses on finance and has
relatively fewer applications in engineering, EVT is also relevant to loss data. This
is especially true in the context of insurance and reinsurance companies that cover
catastrophic losses. Considering the long-term accruing nature of loss data, it exhibits
non-stationarity and volatility, making it necessary to account for these characteristics
in the modeling process to enhance risk measure estimations.

Previous works by Beirlant and Teugels (1992) and Watts et al. (2006) use EVT
models, but they do not consider the dependency structure and time series aspects.
Copulas allow the flexible incorporation of the co-movement of multi-variate data
in the modeling. Jin et al. (2022) utilize the generalized autoregressive conditional
heteroskedasticity-extreme value theory-copula (GARCH-EVT-copula) approach to model
the financial markets and investigate their risk diversification. Frees and Valdez (1998)
show how to apply copulas to dependent actuarial data and to price a reinsurance
contract with retention and limit. Additionally, Chukwudum (2019) studies extremal
dependence using the GPD and copulas to quantify the risk capital under excess of
loss reinsurance strategy.

Portfolio stability in the insurance industry is significantly impacted by large claims,
and reinsurers are particularly concerned about these extreme claims due to the sub-
stantial risk associated with reinsurance agreements. Therefore, it is necessary to con-
duct precise studies on the asymptotic distributions of large claims and their influence
on ruin probabilities when implementing optimal reinsurance strategies. In their work,
Eling et al. (2009) show the link between solvency assessment and ruin probability while
considering the available investment opportunities. Eryilmaz and Gebizlioglu (2017)
study finite time non-ruin probability under exchangeable and dependent claims. Weng
et al. (2009) investigate the asymptotic ruin probabilities within a discrete-time risk
model featuring constant interest rates and the class of regular variation. Furthermore,
Konstantinides (2011) presents the distribution parameters in terms of conver-gence
and explores the implications of heavy-tailed distributions. The sensitivity of the ruin
probabilities concerning loading factors, means of claim frequency, and severity are
considered by Chan and Yang (2005).

The necessity of measuring the validity of models and analyzing their effects is
also a consideration in insurance legislation. If the primary concerns of the decision-
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makers, such as reserves, expected ruin time, and ruin probabilities, are addressed
by an accurate model, more reliable results can be obtained. Given the complexity
involved in measuring and modeling extremes and selecting the optimal reinsurance
strategy, this paper seeks to assess the effectiveness of incorporating EVT models in
reinsurance pricing and quantifying ruin probabilities in case of dependent risk. To
illustrate the practical utility of this approach, a real-life data application is imple-
mented. The expected outcomes of this paper are to guide experts in reinsurance
pricing and decision-making, especially when dealing with dependent extreme losses.

The rest of the paper is organized as follows. Section 2 outlines the theory behind
the combined model, known as GARCH-EVT-copula. The proposed model examines
the extreme values with multivariate dependence and time-varying parameters. In
Section 3, we focus on the compound loss distribution and the premium estimations
for both the reinsurer and insurer, considering four reinsurance strategies. We derive
the related reinsurance-based surplus processes and ruin probabilities in Section 4.
The application of the proposed model to real-world data is demonstrated in Section
5, where we examine the optimal reinsurance strategy for both the insurer and the
reinsurer. Finally, Section 6 presents a summary of the conclusions and highlights
potential areas for future research.

2 Methodology
o account for potential time-dependent trends, volatility clustering, and dependence
on loss data, we integrate autoregressive moving average-GARCH (ARMA-GARCH),
EVT, and copula models. Therefore, we propose a combined model composed of these
three com-ponents. To ease calculations, we initially process the data by applying
a logarithmic transformation and subsequently employ ARMA-GARCH to model the
volatility and trend of each marginal component. Given that actuarial loss data often
exhibit extremes in the right tail, we apply EVT to the standardized residuals of the
ARMA-GARCH model to better capture the heavy-tail risk. Then, we utilize copulas
to model the dependence structure within the data. Finally, we estimate one-step-
ahead risk measures (value-at-risk (VaR) and expected shortfall (ES)) based on the
obtained parameter estimations and assess the validity and accuracy using backtesting
methods. This approach involves several comprehensive steps, and based on that, we
provide a summary of the techniques employed.

2.1 Dynamic ARMA-GARCH
ARMA-GARCH is utilized within a mowing window framework to ensure that time-
dependent changes in the data are adequately represented in the model. In this frame-
work, model parameters are re-estimated in each mowing window of length w as the
new observations become available. The length of the dynamic window, which retains
the last observed w data points, should be chosen sufficiently long to fit a GPD to
the exceedances, yet short enough to effectively reflect the changes in the recent past.
By this, the objective is to reflect accurately not only the current risks but also the
potential risks in the future.
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This approach represents an improvement in accounting for volatility and mean
changes in the observations while deriving an independent and identically distributed
series suitable for EVT. By integrating a time series model with EVT, we also ensure
that the iid observations assumption of EVT is satisfied.

The ARMA-GARCH process is commonly employed for univariate data to extract
information on the trend and the volatility Glosten et al. (1993). As its simple form,
an ARMA(1, 1)-GARCH(1, 1) process is shown as

xj,t = µj,t + δjxj,t−1 + θjϵj,t−1 + ϵj,t,
ϵj,t = zj,t +

√
yj,t,

yj,t = α0,j + αjϵ
2
j,t + βjyj,t−1,

where xj,t denotes the return of asset j at time t, µj,t is the moment, ϵj,t is the residual,
deltaj and θj are the ARMA coefficients. We assume, zj,t to be iid random variables
with mean 0 and variance 1. The variance process is denoted by yj,t at which, α0,j ,
αj , βj > 0, and αj + βj < 1 are required conditions for the GARCH parameters.

2.2 Generalized Pareto distribution
Recent extreme events have demonstrated the inadequacy of models based on the
Gaussian distribution assumption Marimoutou et al. (2009). Insurance data typically
exhibits characteristics such as right-skewness, heavy tails, and high peaks. Attempting
to model such data using the traditional Gaussian distribution can be insufficient and
lead to an underestimation of tail risk. Therefore, our objective is to employ EVT with
the POT approach, allowing us to utilize and extract information more effectively from
the tail of the distribution.

Let X be a random variable with distribution function, FX , The Pickands-Balkema-
De Haan theorem Pickands (1975) and Balkema and De Haan (1974). states that for
most heavy-tailed distributions, given a sufficiently high threshold u ≥ 0, approaching
the upper limit xF = sup

{
x ∈ R : FX(x) < 1

}
≤ ∞, the distribution of the observa-

tions over u converges to a GPD. More precisely, for the excess distribution function
of X over u, defined as Fu(x),

Fu(x) = P (X − u ≤ x|X > u) =
FX(u+ x)− FX(u)

1− FX(u)
, (1)

where 0 ≤ x ≤ xF − u, we obtain the following convergence behaviour

lim
x→xF

sup
0≤x≤xF−u

|Fu(x)−Gκ,σ(x)| = 0, (2)

for some σ > 0, and κ. (1) and (2) directly leads an expression to the distribution of
FX such that,

FX(x) = F̄X(u)Gκ,σ(x−u) + FX(u), (3)
where F̄ = 1− FX . The GPD, Gκ,σ(x), bounded from below by u > 0 with tail index
κ and scale parameter σ, is given by

Gκ,σ(x) =

{
1−

(
1 + κ x

σ

)− 1
κ , if κ ̸= 0,

1− exp
(−x

σ

)
, if κ = 0,

(4)
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where 0 ≤ x ≤ xF −u for κ > 0, and 0 ≤ x ≤ −σ
κ for κ < 0. The mean excess function

of X, e(u) is

e(u) = E
[
X − u|X > u

]
=

( σ

1− κ
+

κ

1− κ
u
)
, 0 ≤ x ≤ xF ,

where 0 < κ < 1. The graph of the mean excess function is the most commonly
used tool to determine the proper threshold. The appropriate threshold u is selected
from the mean excess plot where it becomes roughly linear Charpentier and Flachaire
(2021). Then, maximum likelihood estimator can be used for the parameters of {κ, σ}.
The log-likelihood function of (4), in a sample with length n becomes

l(κ, σ|x) = logL(κ, σ|x) = −n log σ −
(
1 +

1

κ

) n∑
i=1

log
(
1 + κ

xi
σ

)
,

for κ ̸= 0. The parameter estimators can be obtained with respect to κ and σ as
solutions of the following equations

1

κ2

n∑
i=1

log
(
1 + κ

xi
σ

)
−

n∑
i=1

xi
σ + κxi

= 0,

−n+ (1 + κ)

n∑
i=1

xi
σ + κxi

= 0,

respectively, which holds for κ > −0.5 (Smith, 1985).
VaR is the most frequently used risk measure for the financial and insurance in-

dustry and is a benchmark for reserve estimations since the establishment of the Basel
framework. VaR is defined as the q-quantile of the distribution,

V aRq(X) = inf
{
x ∈ R : FX(x) ≥ q

}
= F−1

X (q). (5)

where F−1
X (q) represents the quantile function of the distribution. As useful as it is,

VaR does not give any information beyond the q-quantile and it is not a coherent risk
measure. On the other hand, contrary to VaR, ES is a coherent risk measure and
expressed as

ESq(X) = E
[
X|X > V aRq(X)

]
= V aRq(X) + E

[
X − V aRq(X)|X > V aRq(X)

]
= V aRq(X) + e

(
V aRq(X)

)
. (6)

The semi-parametric estimators of V aRq and ESq, following (3) where Fu follows a
GPD, are given as

ˆV aRq(X) = u+
σ̂

κ̂

[( n

Nu
(1− q)

)−κ̂ − 1
]
, (7)

ÊSq(X) =
ˆV aRq(X)

1− κ̂
+
σ̂ − κ̂

1− κ̂
, (8)
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respectively McNeil (1999). Here, Nu denotes the number of exceedances above the
threshold, Nu = {1 ≤ i ≤ n : xi > u}, and Nu

n is the empirical estimator of P (X > u).
Similarly, following from (3), F̄X(x) can be approximated by

F̄X(x) =
Nu

n

[
1 + κ̂

(x− u)

σ̂

]− 1
κ̂ . (9)

2.3 Dependence
It is well-known that many risks may exhibit multidimensional dependence, especially
the interdependence in the tail distributions which can result in misleading modeling
of catastrophic and systemic risks Frees and Wang (2005). To assess the dependence
in the tails, we employ tail dependence coefficients, which define the probability of one
variable taking an extreme value at the same level another variable takes Ledford and
Tawn (1996). Given two random variables, (X,Y ), with marginal distribution functions
FX and FY , the upper and lower tail dependence coefficients λu and λt respectively,
are defined as

λu = lim
q→0

P
(
X > F−1

X (q)|Y > F−1
Y (q)

)
,

λt = lim
q→1

P
(
X < F−1

X (q)|Y
)
< F−1

Y (q)
)
,

when the limits exist. The coefficients λu and λt can also be used to fit a suitable
copula to the data pairs of (X,Y ).

To benefit from traditional linear dependence measures, like the Pearson correlation
coefficient, certain conditions must be met. Hence, we employ copulas as a more flexible
and suitable approach to identify and support capital adequacy decisions based on risk
measures. While ARMA-GARCH allows for the modeling of marginal distributions,
copulas incorporate the dynamic dependence structure into the model residuals. This
process also provides an iid data basis, satisfying the assumptions required for applying
EVT.

Assume that random variables Xi, where i = 1, . . . , d, have marginal distribution
functions FXi

(xi) = ui, and they are linked by their multivariate distribution function
F. A d-dimensional copula, C(u) = {u1, . . . , ud}, is a multivariate joint distribution
function defined as

F (x1, . . . , xd) = F
(
F−1
X1

(u1), . . . , F
−1
Xn

(un)
)
,

by Sklar (1985). If FXi
is continuous then C is unique, which provides a practical way

to work with d-dimensional distributions.
There are mainly two families of copulas: Elliptical ones with symmetrical tail de-

pendencies and Archimedean ones with asymmetrical tail dependencies. The varying
characteristics of observations can be incorporated into the model by dynamically im-
plementing a copula and time series model Patton (2006). We choose the best-fitting
copula in the application section from a selection that includes Gaussian, Student’s-t,
Clayton, Frank, Gumbel, Joe, Plackett, Galambos, Husler Reiss, Tawn and their ro-
tated variations to assist in modeling the dependence structure of the distribution’s
tail.
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3 Reinsurance under EVT
The effects of the combined GARCH-EVT-copula model on the probability of ruin
under the reinsurance strategies mostly remain unknown Jorion (2007). The ruin
probability highly depends on the large claims in the tail and intends to provide a basis
for premiums, reserves, capital requirements, and obtain estimations by standards such
as Solvency II and IFRS17 Tsai and Chen (2011). Following from Mikosch (1997), we
assume that the claim number at time t, N(t), follows a homogeneous Poisson counting
process, with intensity E[N(t)] = λt > 0, such that

P
(
N(t) = k

)
=
e−λt(λt)k

k!
, k ∈ N.

Independent from the claim number, let Xi, i = 1, . . . , N(t), be the non-negative claim
amount random variable with mean µX , variance, σX , and common distribution func-
tion F . Thus, the corresponding total claim amount S(t) =

∑N(t)
i=1 Xi, for N(t) > 0,

constitutes a compound Poisson process.
Various reinsurance strategies can be applied based on different risk structures. For

example, quota share rein-surance is generally used in small claims branches. Excess of
loss can be considered an extreme value reinsurance contract, as it covers claims above
a predetermined limit. Similarly, the largest claims reinsurance and ecomor provide
coverage only for the pre-defined number of upper tail claims.

The total claim amount S(t) is divided between R(t) for the reinsurer and I(t) for
the insurer, as S(t) = R(t) + I(t). The total premium, c(t), is subdivided between
PR(t) for the reinsurer and PI(t) for the insurer, as c(t) = PR(t)+PI(t). We follow an
expected value premium principle with loading factors ρ for the insurer and ν for the
reinsurer to cover the loss of each party,

PR(t) = (1 + ν)E[R(t)] = (1 + ν)E[S(t)− I(t)],

PI(t) = (1 + ρ)E[R(t)]− PR(t)− (ρ− ν)µXλt+ (1 + ν)E[I(t)],

where, ν ≥ ρ > 0 is assumed to ensure that the premium charged by the insurer and
reinsurer satisfies the no rip-off condition.

3.1 Excess of loss reinsurance
Excess of loss (EOL) reinsurance provides coverage per risk for the large claims over
the chosen limit m < xF . EOL cuts down the exposure for the insurer, therefore, it
is frequently used in casualty policies. The loss variables, Rm(t) for the reinsurer and
Im(t) for the insurer are defined as Rm(t) =

∑N(t)
i=1 (Xi−m)+ and Im(t) =

∑N(t)
i=1 (Xi∧

m), where

(Xi −m)+ =

{
0, if Xi ≤ m,

Xi −m, if Xi > m,

Xi ∧m =

{
Xi, if Xi ≤ m,

m, if Xi > m,
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respectively. Hence, the excess loss above the limit amount, {X −m|X > m}, will be
transferred to the reinsurer. The corresponding distribution function of Rm and Im
are

FRm
(x) = FX(x+m), x ≥ 0,

FIm(x) =

{
FX(x), if x ≤ m,

1, if x > m.

Since, losses above a prescribed threshold u follows a GPD, losses above any m ≥ u
also follows a GPD. The corresponding expected value premiums, P0(t), together with
their estimators, P̂0(t), for reinsurer and insurer become Albrecher et al. (2017).

PRm(t) = (1 + ν)E[R(t)] = (1 + ν)λtE[(Xi −m)+],

= (1 + ν)λtF̄X(m)e(m),

P̂Rm
(t) = (1 + ν)λt

Nu

n

[
1 + κ̂

(m− u)

σ̂

]− 1
2
( σ̂

1− κ̂
+

κ̂m

1− κ̂

)
,

PIm(t) = (1 + ρ)E[S(t)]− (1 + ν)E
(
PRm

(t)
)

= (1 + ρ)µ̂Xλt− (1 + ν)λtF̄X(m)e(m),

P̂Im(t) = (1 + ρ)µ̂Xλt− (1 + ν)λt
Nu

n

[
1 + κ̂

(m− u)

σ̂

]− 1
2
( σ̂

1− κ̂
+

κ̂m

1− κ̂

)
,

where e(m), m ≥ u is the mean excess function and F̄X(m) is approximated as given
in (9). Note that from (6), e

(
V aRq(X)

)
= ESq(X) − V aRq(X) and if one takes

V aRq(X) = m, this leads to

E
[
X −m)+

]
= E

[(
X − V aRq(X)

)
+

]
= F̄X

(
V aRq(X)

)
E
[
X − V aRq(X)|X > V aRq(X)

]
= F̄X

(
V aRq(X)

)
e
(
V aRq(X)

)
= F̄X

(
V aRq(X)

)(
ESq(X)− V aRq(X)

)
,

therefore, PRm(t) and PIm(t) can also be represented by their corresponding VaR and
ES measures.

3.2 Quota share reinsurance
Quota share (QUO) is an administratively simple reinsurance contract which shares the
loss between the insurance and reinsurance based on a weight parameter, 0 < β < 1.
The loss variables Rβ of the reinsurer and Iβ of the insurer are Rβ(t) = (1−β)

∑N(t)
i=1 Xi

and Iβ(t) = β
∑N(t)

i=1 Xi.
The corresponding distribution functions of Rβ and Iβ are FRβ

(x) = FX

(
x

1−β

)
and

FIβ (x) = FX

(
x
β

)
.

The expected value premiums for reinsurer and insurer together with their estima-
tors become

PRβ
(t) = (1 + ν)E[Rβ(t)] = (1 + ν)λt(1− β)µX ,



65 A. Bazyari

P̂Rβ
(t) = (1 + ν)λt(1− β)µ̂X ,

PIβ (t) = (1 + ρ)E[S(t)]− PRβ
(t) = µXλt[(ρ− ν) + β(1 + ν)],

P̂Iβ (t) = µ̂Xλt[(ρ− ν) + β(1 + ν)], (10)

respectively.

3.3 Largest claims reinsurance
Largest claims (LCR) reinsurance transfers the largest r number of claims to the rein-
surer that occurred up to time horizon t (see Ammeter (1964)). Therefore, the number
of reinsured claims is predefined as a positive integer r. As each new claim arrives, the
r largest claims in the most recent moving window of length w such that {1 ≤ r ≤ w},
is determined. For any following claim exceeding the previous largest claim, the ex-
ceedance amount is paid by the reinsurer.

Let X∗
1,N(t) ≥ X∗

2,N(t) ≥ · · · ≥ X∗
N(t),N(t) denote the order statistics of Xi. The

amount paid by the reinsurer and insurer until time t are defined as

Rlcr(t) =

r∑
i=1

X∗
i,N(t)I

(
N(t) ≥ r

)
,

Ilcr(t) = S(t)−
r∑

i=1

X∗
i,N(t)I

(
N(t) ≥ r

)
,

respectively. If the largest r claims in a moving window of length w are covered by the
LCR, then by the definition of value-at-risk in (5), claims above the level V aR(1− r

w )

are transferred to the reinsurer. Corresponding distribution functions of Rlcr and Ilcr
are

Flcr(x) =

{
FX(V aR(1− r

w )), if x < V aR(1− r
w ),

FX(x), if x ≥ V aR(1− r
w ).

Flcr(x) =

{
FX(x), if x < V aR(1− r

w ),

1, if x ≥ V aR(1− r
w ).

Therefore, the expected value premiums for reinsurer and insurer together with their
estimators can be shown as

PRclr
(t) = (1 + ν)

w∑
n=r

rES(1− r
n )(X)

e−λt(λt)n

n!
,

P̂Rclr
(t) = (1 + ν)

w∑
n=r

rÊS(1− r
n )(X)

e−λt(λt)n

n!
,

PIclr (t) = (1 + ρ)µXλt− PRclr
(t),

P̂Iclr (t) = (1 + ρ)µ̂Xλt− (1 + ρ)µXλt− PRclr
(t), (11)

respectively.
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3.4 Ecomor reinsurance
Introduced by (Thepaut, 1950), ecomor (ECO) is an excess-of-loss reinsurance where
the threshold is determined as the (r∗ + 1)th largest claim. The number of reinsured
claims is predetermined as r∗. If N(t) ≤ r∗, the random retention level is nonexistent
and assumed to be zero, and the reinsurer pays all the claims. Let X∗

1,N(t) ≥ X∗
2,N(t) ≥

· · · ≥ X∗
N(t),N(t) denote the order statistics of Xi. The amount paid by the reinsurer

and insurer are defined as

Reco(t) =

N(t)∑
i=1

(
Xi −X∗

r∗+1,N(t)

)
+
I
(
N(t) ≥ r∗

)
=

r∗∑
i=1

X∗
i,N(t)I

(
N(t) ≥ r∗

)
− r∗X∗

r∗+1,N(t)

−r∗X∗
r∗+1,N(t)I

(
N(t) ≥ r∗

)
,

Ieco(t) = S(t)−
N(t)∑
i=1

(
Xi −X∗

r∗+1,N(t)

)
+
I
(
N(t) ≥ r∗

)
,

respectively. If the excess of r∗ largest claims over the (r∗ + 1)th are covered by
reinsurance, then in the selected moving window of length w, any excess claim amount
above V aR1− r∗+1

w
is transferred to the reinsurer. Therefore similar to LCR reinsurance,

the distribution function for insurance will be a GPD truncated above the V aR1− r∗+1
w

.
In this approach, the distribution functions of Reco and Ieco are

FReco
=

{
FX(V aR1− r∗+1

w
), if x = 0,

FX(x+ V aR1− r∗+1
w

), if x ≥ 0,

FIeco =

{
FX(x), if x < V aR1− r∗+1

w
,

1, if x ≥ V aR1− r∗+1
w
.

respectively, whose expected premiums for reinsurer and insurer together with their
estimators are expressed as

PReco
(t)= (1 + ν)

w∑
n=r∗

[
rES(1− r∗

n )(X)− rV aR1− r∗+1
w

]e−λt(λt)n

n!
, (12)

P̂Reco
(t)= (1 + ν)

w∑
n=r∗

[
rÊS(1− r∗

n )(X)− r ˆV aR1− r∗+1
w

]e−λt(λt)n

n!
,

PIeco(t)= (1 + ρ)µXλt− PReco
(t),

P̂Ieco(t)= (1 + ρ)µ̂Xλt− (1 + ν)

w∑
n=r∗

[
rÊS(1− r∗

n )(X)− r ˆV aR1− r∗+1
w

]e−λt(λt)n

n!
,

respectively.
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4 Ruin probability
This section demonstrates and compares the possible effects of each aforementioned
reinsurance strategy from the perspectives of the reinsurer and the insurer. The main
aim of reinsuring any loss branch is to estimate and control the ruin probability. In
the classical risk theory, ruin probabilities are commonly derived for light-tailed dis-
tributions. On the other hand, our approach derives the asymptotic ruin probabilities
for a heavy-tailed data set depending on these reinsurance strategies. Therefore, we
provide realistic and accurate risk estimates for the contracts encountered in practice.

Assume that the claim frequency and severity are independent. The corresponding
Cramer-Lundberg model Lundberg (1903) for the surplus process is given as

U(t) = u0 + c(t)− S(t), t ≥ 0,

where u0 ≥ 0, denotes the initial wealth, c(t) = (1+ ρ)E
[
N(t)

]
E(X) is the continuous

premium income up to time t with loading factor ρ. e assume that the premium satisfies
the net profit condition c(t) > λtµX , so that the insurer’s probability of ruin despite
its high initial surplus is not equal to one. Since a Poisson process is assumed for
the compound loss distribution, the interarrival time of losses follows an exponential
distribution with 1

λ and it is constant. The ultimate ruin probability, corresponding to
U(t) < 0 is defined as

ψ(u0) = P
(
U(t) < 0, for some t

)
.

For the light-tailed distributions, where X has a finite moment generating function, and
if there exists an adjustment coefficient, R > 0, nd the probability of ruin is bounded
such that ψ(u) ≤ e−Ru. or the ruin probability of the heavy-tailed GPD, which moment
generating functions do not exist for high moments, the Cramer-Lundberg probability
estimates do not exist either. Nonetheless, strict Pareto and Pareto type distributions
belong to the class of subexponential distributions, F ∈ S, and by using their properties
one can asymptotically compute the related ruin probabilities (see Albrecher et al.
(2017), Bazyari (2023a) and Bazyari (2023b)).

Recalling some heavy-tailed distribution properties, if F belongs to the subexpo-
nential distribution class, which is a subclass of heavy-tailed distributions with the
tail decreasing slower than that of any exponential distribution, the following equation
holds

lim
x→∞

F̄n∗
(x)

F̄ (x)
, ∀n ≥ 2,

where, Fn∗ is the n-fold convolution. (for more details on the Subexponential distri-
bution, the reader can refer to Bazyari (2022)).

Modeling the extreme losses can be considered as

P
(
X1 + · · ·+Xn > x

)
= F̄n∗

(x) ∼ P
(
max(Xi) > x

)
, as x→ ∞,

and hence, the asymptotic ruin probability is computed such as

ψ(u0) =
ρ

1 + ρ

∞∑
n=0

(1 + ρ)−nF̄n∗
L (u0), u0 ≥ 0,
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where, the n-fold convolution of the integrated tail distribution of F or sometimes
called as the Lorenz curve, FL(x), is defined as

FL(x) =
1

µX

∫ x

0

F̄ (y)dy, x ≥ 0.

Given that, F ∈ S, one can write for a sufficiently large u0

ψ(u0)

F̄L(u0)
=

ρ

1 + ρ

∞∑
n=0

(1 + ρ)−n F̄
n∗
L (u0)

F̄L(u0)
=

ρ

1 + ρ

∞∑
n=0

(1 + ρ)−nn = ρ−1.

Then, the ruin probability in the renewal risk model becomes

FL ∈ S ⇐⇒ 1− ψ(u0) ∈ S ⇐⇒ ψ(u0) = ρ−1F̄L(u0), u0 → ∞,

and can be expressed as
ψ(u0) =

1

ρµX

∫ ∞

u0

F̄ (y)dy,

which indicates that, even if the initial surplus u0 is large, ruin may occur depending
only on the integrated tail distribution function of F. Also, the ruin probability is not
affected by the parameter λ since both the premium and the aggregate loss are affected
by it at the same rate. Let us assume that, at time t, the surplus processes for reinsurer,
UR(.)(t), and insurer, UI(.)(t), for each reinsurance scheme are defined as

UR(.)(t) = u0 + PR(.)(t)−R(.)(t), t ≥ 0,

UI(.)(t) = u0 + PI(.)(t)− I(.)(t), t ≥ 0,

where (.) takes {m,β, lcr, eco} with respect to EOL, QUO, LCR, and ECO, respec-
tively. Similarly, the ruin probability are defined as ψR(.)(u0) and ψI(.)(u0), respec-
tively. Based on our proposed approach, we develop and analytically derive the surplus
processes and ruin probabilities for each reinsurance strategies accordingly.

4.1 Parameter selection
To maintain the comparability between the reinsurance treaties, we select QUO, LCR,
and ECO reinsurance parameters, {β, r, r∗}, depending on the EOL reinsurance pa-
rameter m ≥ u and according to the criteria that the total premium (PR+PI) is equal
in each treaty. This also provides that the distribution functions of EOL, QUO, LCR
and ECO will belong to the subexponential family. For the estimation of the QUO
reinsurance parameter β, expected premiums in (10) and (10) are taken as equal which
leads to

β = 1− Nu

µXn

[
1 + κ

(m− u)

σ

]− 1
κ
( σ

1− κ
+

κ

1− κ
m
)
.

(10) and (11) are used in determining the LCR reinsurance parameter r, and (10) and
(12) are used in determining the ECO parameter r∗. The minimum integer values of
{r, r∗} are chosen to satisfy the equations. In order to maintain the comparability of
strategies in each time point, the parameter estimations need to be redone in each
moving window.
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4.2 Under EOL assumption
The surplus process estimations for the reinsurer and the insurer are derived as

ÛR(m)
(t) = u0 + (1 + ν)λt

Nu

n

[
1 + κ̂

(m− u)

σ̂

]− 1
κ̂
( σ̂κ̂

1− κ̂

)
−

w∑
i=1

(Xi −m)+,

ÛI(m)
(t) = u0 + (1 + ρ)µ̂Xλt− (1 + ν)λt

Nu

n

[
1 + κ̂

(m− u)

σ̂

]− 1
κ̂
( σ̂κ̂

1− κ̂

)
−

w∑
i=1

(Xi ∧m),

whose ruin probabilities, for a sufficiently large u0, become

ψ̂R(m)
(u0)=

[
ν
Nu

n

[
1 + κ̂

(m− u)

σ̂

]− 1
κ̂
( σ̂

1− κ̂
+

κ̂

1− κ̂
m
)]−1

∫ ∞

u0

F̄Rm(y)dy,

ψ̂I(m)
(u0)=

[
ρµ̂X − ν

Nu

n

[
1 + κ̂

(m− u)

σ̂

]− 1
κ̂
( σ̂

1− κ̂
+

κ̂

1− κ̂
m
)]−1

∫ ∞

u0

F̄Im(y)dy,

respectively.

4.3 Under QUO assumption
The estimates for surplus process regarding to the reinsurer and the insurer are

ÛRβ
(t) = u0 + (1 + ν)(1− β)µ̂Xλt− (1− β)

w∑
i=1

Xi,

ÛIβ (t) = u0 +
(
(ρ− ν) + β(1 + ν)

)
µ̂Xλt− β

w∑
i=1

Xi,

whose ruin probabilities, for a sufficiently large u0, become

ψ̂Rβ
(t) =

[
ν(1− β)µ̂X

]−1
∫ ∞

u0

F̄Rβ
(y)dy,

ψ̂Iβ (t) =
[(
(ρ− ν) + βν

)
µ̂X

]−1
∫ ∞

u0

F̄Iβ (y)dy,

respectively.

4.4 Under LCR assumption
The surplus process for the reinsurer and the insurer are estimated as

ÛRlcr
(t) = u0 + (1 + ν)

w∑
n=r

rÊS(1− r∗
n )(X)

e−λt(λt)n

n!
−

r∑
i=1

X∗
i,N(t),

ÛIlcr (t) = u0 + (1 + ρ)µ̂Xλt− (1 + ν)

w∑
n=r∗

rÊS(1− r∗
n )(X)

e−λt(λt)n

n!
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−S(t) +
r∑

i=1

X∗
i,N(t),

Accordingly, the ruin probabilities for a sufficiently large u0 become

ÛRlcr
(t) =

(
ν

w∑
n=r

rÊS(1− r∗
n )(X)

e−λt(λt)n

n!

)−1
∫ ∞

u0

F̄Rlcr
(y)dy,

ÛIlcr (t) =
(
ρµ̂Xλt− ν

w∑
n=r∗

rÊS(1− r∗
n )(X)

e−λt(λt)n

n!

)−1
∫ ∞

u0

F̄Ilcr (y)dy,

respectively.

4.5 Under ECO assumption
The surplus process estimations for the reinsurer and the insurer are

ÛReco(t) = u0 + (1 + ν)

w∑
n=r∗

[
r∗ÊS(1− r∗

n )(X)− r∗ ˆV aR1− r∗+1
n

]e−λt(λt)n

n!

−
r∑

i=1

X∗
i,N(t) − r∗X∗

r∗+1,N(t),

ÛIlcr (t) = u0 + (1 + ρ)µ̂Xλt− (1 + ν)

w∑
n=r∗

[
rÊS(1− r∗

n )(X)

−r∗ ˆV aR1− r∗+1
n

]e−λt(λt)n

n!
−

w∑
i=1

(
Xi −

(
Xi −X∗

r∗+1,N(t)

)
+

)
.

And the ruin probabilities, for a sufficiently large u0, become

ÛReco(t)=
(
ν

w∑
n=r∗

r∗ÊS(1− r∗
n )(X)− r∗ ˆV aR(

1− r∗+1
n

) e−λt(λt)n

n!

)−1
∫ ∞

u0

F̄Reco(y)dy,

ÛIeco(t)=
(
ρµ̂Xλt− ν

w∑
n=r∗

r∗ÊS(1− r∗
n )(X)

−r ˆV aR(
1− r∗+1

n

) e−λt(λt)n

n!

)−1
∫ ∞

u0

F̄Ieco(y)dy,

respectively.

5 Application
We consider an open data source on non-life insurance provided by the US Insurance
Services Office whose details are kept anonymous Frees and Valdez (1998). The data
set contains 1,500 general liability claims (Loss) and their corresponding allocated loss
adjustment expenses (ALAE), which provides sound reasoning for the applicability of
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all four reinsurance strate-gies. ALAE covers mainly the fees paid to outside attorneys,
medical consultants, insurance experts, and legal fees. This data set is studied exten-
sively in copula literature and is reckoned to create a presentable base for dependence
illustration (for more details we refer to Kulekci et al. (2023) and Denuit et al. (2004)).
We removed 34 claims from the data set, which were left truncated and censored due
to the policy limits and deductibles. In Figure 1, the remaining n = 1, 466 data from
both series show recognizable peak values at certain times.

Figure 1: Loss and ALAE in the original scale.

Descriptive statistics in Table 1 depict that the observations are right skewed and
have high peakedness.

Table 1: Descriptive statistics of Loss and ALAE.
Variable Min. Q2 Median Mean Q3 Max. Skew. Kurt. Std. Dev.

Loss 10 3750 11048 37110 32000 2173595 10.97 209.91 9251280
ALAE 15 2318 5420 12018 12292 501863 10.8 152.60 2671235

It is experienced that if the dynamic window length (w) is selected as 100, there
remains an insufficient number of observations above the threshold for parameter esti-
mation, and the GPD assumption weakens. If w is increased to 500, the real extreme
values in the data are not reflected enough in the risk measure estimations. For these
reasons, we take the moving window length of 250 observations in estimating the model
parameters. The Akaike information criterion (AIC), and the Bayesian information
criterion (BIC) show that the best-fitted time series model, amongst ARMA(p, q) −
GARCH(r, s) with {p, q, r, s ≤ 2}, is indeed ARMA(1, 1) − GARCH(1, 1). The es-
timated shape parameter of GPD becomes approximately linear around 80% of the
ordered data. Therefore, the POT threshold u in each moving window is assigned cor-
responding to this quantile. One-step-ahead risk measure estimations are computed
for the commonly used q = 0.95 onfidence level with estimated parameters using 104
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simulations.
We assume the policy limit m for the EOL reinsurance in each moving window as

the 80% quantile. The remaining reinsurance parameters {β, r, r∗} f QUO, LCR, and
ECO are estimated accordingly, with the constraint that the total premium for the
insured in each reinsurance treaty remains equal. We assume loading factors {ρ, ν} =
{0.15, 0.2} or the insurer and reinsurer, respectively, which are chosen arbitrarily with
the condition ν geρ to ensure the no rip-off condition. To observe the impact of {ρ, ν},
on results, different values are also considered, and it is found to be insignificant in the
choice of optimal reinsurance strategies. Throughout the application part, the dashed
lines in the figures represent the reinsurer, and solid lines define the insurer. The λ
alue is assumed as 1. Choosing a different λ only changes the surplus value at the same
rate and does not affect the order of optimal reinsurance based on the ruin probability
order.

The dependence structure is explained in two parts. We illustrate the performance
of the dynamic GARCH-EVT model with and without the assumption of copula to
evaluate the effect of dependence. Since extreme events’ impact on a portfolio may seem
less prominent, a portfolio consisting of equally weighted Loss-ALAE was also tested
alongside the individual Loss and ALAE data sets. The simplified implementation
steps are presented in Table 2 to follow the combined modeling stages.

Figure 2 shows the dynamic GPD parameter estimations via pseudo-MLE for the
GARCH-EVT and GARCH-EVT-copula models. The estimated κ parameters are
largely below zero, indicating that the limiting distribution for normalized maximas,
generalized under GPD, arises from a Weibull extreme value distribution. Transitioning
from GARCH-EVT to GARCH-EVT-copula, the effects of incorporated dependence
show up as a decrease in κ̂ and σ̂. The change is more prominent for the heavier-tailed
ALAE.

5.1 GARCH-EVT model
This section employs the GARCH-EVT framework without the copula assumption. (7)
and (8) are utilized to calculate V aR0.95 and ES0.95 estimates, as presented in Figure 3
for Loss, ALAE, and the equally-weighted Portfolio, respectively. The jump responses
of risk measures are visible following significantly high losses to cover the potential
future extremes. A violation is defined as a realized claim exceeding the estimated
one-step ahead risk measure. Employing a moving window of 250 data results in 1216
estimation points, and with a 0.95 confidence level, the expected number of violations
for the risk measures is 60.8.

To assure the reliability of estimated risk measures, we employ three backtesting
methods. The individual and portfolio backtesting results for actual violations are pre-
sented in Table 3. Based on the unconditional coverage (UC) and conditional coverage
(CC) tests, the number of V aR0.95 violations for Loss, ALAE, and Portfolio falls within
the accepted limits, and they are independent (Kupiec, 1995 and Christoffersen,1998).
ALAE containing more extremes than the others, shows a relatively poorer fit with 49
violations, compared to Loss and the Portfolio. The results of the residuals bootstrap
test for ES0.95 state that, for both individual and portfolio cases, the mean of excess
violations of V aR0.95 is greater than zero (McNeil and Frey, 2000). The backtesting
results support the justifiability of the GARCH-EVT model.
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Figure 2: GPD parameter estimations.

Table 2: Algorithm of the dynamic EVT-GARCH-copula model.
Input: Log-return data set, {n,w, q} = {1466, 250, 0.95}
for j = {Loss,ALAE,Portfolio} do
for k = 1 : (n− w + 1) do
for i = k : (k + w + 1) do
Estimate ARMA(1, 1)-GARCH(1, 1) parameters.
Obtain standardized residuals (std. res.).
Convert std. res. to uniform std. res.
If integrate copula then
Fit copula to uniform std. res. and simulate 104 one-step-ahead estimates.
Back transform simulated uniform std. res. to simulated std. res. using
the inverse cdf.
end
Apply EVT to simulated std. res.
Select threshold value, and estimate GPD parameters.
end
Estimate residual V aRϵ and ESϵ using GPD parameters.
Estimate V aRq and ESq using ARMA(1, 1)-GARCH(1, 1) coefficients.
end
Compute premium estimations, P̂R and P̂I , for j.
Compute premium estimations, ÛR and ÛI , for j.
Compute the heavy tailed ruin probabilities, ψ̂R(u0) and ψ̂I(u0) for j.
end

The dynamically estimated premium values under the four reinsurance strategies
are presented in Figure 4 for both the insurer and the reinsurer. While EOL and QUO
exhibit relatively stable premium values that stay close to each other, LCR and ECO
show more variability in premium values, especially after the occurrence of an extreme
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Figure 3: Risk measure estimations in the GARCH-EVT setting.

Table 3: Backtesting results in the GARCH-EVT setting.
Loss ALAE Portfolio

Actual of violations 60 49 57
V aR0.95 UC p-value 0.9160 0.1086 0.6135

CC p-value 0.9931 0.1137 0.8619
ES0.95 p-value 0 0 0

loss. Under EOL, LCR, and ECO strategies, the reinsurer covers the low-probability
and high-impact claims within the data series. In the case of QUO reinsurance, the
reinsurer covers a small portion of each claim. Therefore, the premium for the reinsurer
is significantly lower than the insurers in each strategy. Since the total premium remains
constant in each strategy throughout the testing period, the insurer premium values
have the opposite order of what is received for the reinsurers. However, since the level
of risk does not remain constant, the selection of the optimal reinsurance strategy
should not be solely based on the premium amounts received by the parties.

The realized surplus processes for Loss, ALAE, and the Portfolio are given in Figure
5 for u0 = 0, where the solid lines represent the insurer, while the dashed lines represent
the reinsurer. Increasing u0, the initial surplus value, results in higher surplus levels
but does not alter the order of magnitude of the surplus values or the ruin probabilities
associated with the reinsurance strategies. For both univariate and portfolio cases, the
insurance contracts are ranked from highest to lowest surplus for the insurer as EOL,
QUO, LCR, and ECO. The ranking for the reinsurer is the opposite of the insurer’s,
as expected. Regarding ALAE, LCR and ECO are significantly more advantageous for
the reinsurer than EOL and QUO. This is because LCR and ECO provide greater pro-
tection against the most extreme values in the process. Contrary to the changing order
of the premiums in the univariate and portfolio cases, the same order of surplus values
is preserved across all reinsurance treaties. This shows that the premium amounts
received by the reinsurer and insurer may not necessarily indicate the preference of a
reinsurance contract. The outcome depends heavily on and is shaped by the realized
data. The average ruin probabilities over the entire testing period are given in Table
4 for comparison purposes, ranked from the highest (1) to the lowest (4). For the
reinsurer, based on the average lowest ruin probability, the optimal treaties are QUO
for Loss, which provides a safer position by shared coverage, and ECO for ALAE and
Portfolio, which offers greater protection in case of heavier claims. For the insurer, the
optimal treaty is EOL for Loss and Portfolio, which can provide a more predictable
claim payment process by transferring all excesses over the threshold. For ALAE, the
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optimal treaty is QUO, which can only lower the ruin probability by sharing all claims.

Optimality is not solely related to the premium received from each strategy, based
on the comparison between the premiums and ruin probabilities. For example, EOL
results in the highest ruin probabilities for the reinsurer in each case, therefore the
highest risk. However, it does not consistently deliver the highest premium.

Figure 4: Premium estimations in the GARCH-EVT setting.

Figure 5: Surplus estimations in the GARCH-EVT setting.
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Table 4: Average ruin probabilities in the GARCH-EVT setting.
Loss ALAE Portfolio

Contract Reinsurer Insurer Reinsurer Insurer Reinsurer Insurer
EOL 0.2234 (1) 0.1726 (4) 0.2483 (1) 0.1688 (3) 0.2359 (1) 0.1707 (4)
QUO 0.0491 (4) 0.1915 (3) 0.0985 (2) 0.1631 (4) 0.0738 (3) 0.1773 (3)
LCR 0.1625 (2) 0.2573 (1) 0.0916 (3) 0.2110 (1) 0.1270 (2) 0.2342 (1)
ECO 0.0896 (3) 0.2248 (2) 0.0299 (4) 0.1794 (2) 0.0597 (4) 0.2022 (2)

Ranking: (1) highest to (4) lowest.

5.2 GARCH-EVT-copula model
We begin by examining dependence in Figure 6 and Figure 7. The scatterplot (Figure
6a) shows a significant and positive correlation between Loss and ALAE. The corre-
lation coefficients (Figure 6b), calculated using a 250-day mowing win-dow, confirm
varying positive dependence, ranging from 0.25 to 0.54. This interdependence is more
pronounced in the right tail of the distribution, indicating a higher likelihood of an
extreme Loss accompanying an extreme ALAE. This is expected due to higher losses
often leading to higher expenses. Given these findings, it becomes important to enhance
our modeling framework with copula methodologies.

In Figure 8, the tail dependence coefficients indicate that, compared to a Gaussian
distribution, left-tail dependence is lower while right-tail dependency is stronger. To
determine the optimal copula model among various copula models with different de-
pendence structures, we use maximum likelihood estimation. The results show that
the Joe copula, known for its asymmetric and high right-tail dependence from the
Archimedean family, is the best-fitting choice. Consequently, we re-estimate ARMA-
GARCH, GPD, and Joe copula parameters for each moving window. The V aR0.95 and
ES0.95 estimations of the GARCH-EVT-copula model (in Figure 8) show a slightly
more flexible fit compared to those of the GARCH-EVT model (in Figure 2). This
improvement is attributed to the incorporation of dependence through the Joe copula.
The backtesting results presented in Table 5 support this improvement, especially in
terms of the number of violations for ALAE, by resulting in a better fit.

Table 5: Backtesting results in the GARCH-EVT-copula setting.
Loss ALAE Portfolio

Actual of violations 61 58 63
V aR0.95 UC p-value 0.9790 0.7105 0.7735

CC p-value 0.9996 0.4121 0.8803
ES0.95 p-value 0 0 0

It is noticeable that with the addition of copula in the GARCH-EVT-copula model,
premiums for Loss and ALAE (in Figure 9a and Figure 9b) increase in EOL and QUO
reinsurances, while they decrease in LCR and ECO. The increase in EOL and QUO is
indicative of the previously unrecognized extreme right-tail dependence present in the
data, which the copula effectively captures. Premium estimations for the Portfolio with
the GARCH-EVT-copula model (in Figure 9c) align with the univariate case results.
The inclusion of copula increases the average reinsurer premium values for EOL and
QUO reinsurances and decreases them for LCR and ECO reinsurances.

The surplus estimations under the GARCH-EVT-copula setup in Figure 10 display
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Figure 6: Dependence analyses.

Figure 7: Left and right tail dependencies compared to Gaussian distributions.

Figure 8: Risk measure estimations in the GARCH-EVT-copula setting.

a decrease in each reinsurance strategy for ALAE and Portfolio when compared to
the GARCH-EVT model. This decrease is visibly distinct in the reinsurer surpluses
of ALAE due to the improvement in the risk measures and premium estimations by
the Joe copula. In the Portfolio, the decline in surplus values is largely influenced by
the decrease in ALAE. Surplus estimations for Loss remain roughly the same with the
GARCH-EVT model. The reinsurer derives greater benefits from the reduced ruin
probability compared to the insurer. Because by modeling the dependence, the copula
model accounts for the co-dependency in the extreme values.
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Figure 9: Premium estimations in the GARCH-EVT-copula setting.

In Table 6, it is observed that the average ruin probabilities for Loss maintain a
similar order of magnitude as in the GARCH-EVT model. However, for ALAE and
Portfolio, the order differs. In ALAE, the optimal treaty for the insurer shifts from
QUO to EOL to provide more coverage against the extremes. Conversely, the optimal
treaty for the reinsurer remains ECO since ALAE has more extreme data than Loss.
As for the Portfolio, the insurer’s optimal treaty remains unchanged, while for the
reinsurer, it shifts from ECO to QUO. This change arises from Loss returns being
higher and more prominent in the Portfolio compared to ALAE.

Figure 10: Surplus estimations in the GARCH-EVT-copula setting.
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Table 6: Average ruin probabilities in the GARCH-EVT-copula setting.
Loss ALAE Portfolio

Contract Reinsurer Insurer Reinsurer Insurer Reinsurer Insurer
EOL 0.2044 (1) 0.1648 (4) 0.2040 (1) 0.1569 (4) 0.2042 (1) 0.1609 (4)
QUO 0.0399 (4) 0.1959 (3) 0.0535 (3) 0.2225 (1) 0.0466 (4) 0.2092 (2)
LCR 0.1658 (2) 0.2533 (1) 0.1122 (2) 0.2123 (2) 0.1391 (2) 0.2328 (1)
ECO 0.0933 (3) 0.2224 (2) 0.0481 (4) 0.1807 (3) 0.0708 (3) 0.2016 (3)

Ranking: (1) highest to (4) lowest.

Discussion and conclusions
This paper investigates the impact of reinsurance strategies on the ruin probability in
the context of dependent and heavy-tailed actuarial data using the extreme value the-
ory framework. We employ the GARCH-EVT-copula model with a moving windows
approach to dynamically estimate one-day-ahead losses. The considered reinsurance
treaties include excess-of-loss, quota-share, largest claims, and ecomor. To the best of
our knowledge, this is the first study to derive surplus and asymptotic ruin probabil-
ity estimates under the proposed model, taking into account both the insurer’s and
reinsurer’s perspectives. We employ real-life bivariate insurance data, Loss-ALAE, to
demonstrate the influence of the copula. We assess the effects of each reinsurance
strategy on p remiums, surplus p rocesses, and ruin p robabilities, both for univariate
data and an equally-weighted portfolio. Experimental results using the heavy-tailed
Loss-ALAE data reveal that the ARMA(1,1)-GARCH(1,1) model under the peaks over
threshold (POT) approach with the Joe copula function is the most suitable model.
Findings indicate that the dynamic GARCH-EVT-Copula model can yield more ac-
curate risk assessments and help the insurer and reinsurer to control their risks by
facilitating the selection of the appropriate reinsurance strategy.

By incorporating tail dependence, the copula mitigates the over- and under- es-
timation of the risk due to extreme values. Notably, the largest claims and ecomor
reinsurance treaties prove advantageous for reinsurer’s risk assessment in heavy-tailed
loss scenarios. Ignoring dependence in modeling leads to an underestimation of risk
in the case of largest claims and ecomor reinsurances, while overestimating risk in
excess-of-loss and quota share arrangements. Furthermore, it’s worth noting that, the
ruin probabilities for largest claims reinsurance consistently dominate those of ecomor
in heavy-tailed data. As future work, introducing the reinvestment of surplus with a
stochastic interest rate can make the model even more realistic. Expanding the dimen-
sionality using vine copulas and allowing for changes in the type of reinsurance treaty
during the policy period can further improve risk assessment capabilities.
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