تغییرات مکانی-زمانی دو شاخص خشکسالی ماهوارهای و همبستگی آنها با متغیرهای هیدرواقلیم و گیاهی در گستره ایران | ||
خشک بوم | ||
دوره 13، شماره 2، مهر 1402، صفحه 209-225 اصل مقاله (1.72 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.29252/aridbiom.2024.21468.2008 | ||
نویسندگان | ||
حسن مرادیاننسب1؛ علیرضا نفرزادگان* 2؛ یحیی اسماعیل پور3 | ||
1دانشآموخته کارشناسیارشد علوم ومهندسی آبخیز، دانشگاه هرمزگان، بندرعباس، ایران | ||
2استادیار گروه مهندسی منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران | ||
3دانشیار گروه مهندسی منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران | ||
چکیده | ||
خشکسالی یکی از فراگیرترین و پرهزینهترین بلایای طبیعی است که بشر با آن مواجه است. استفاده از شاخصهای مبتنی بر سنجش از دور یکی از ابزارهای کارآمد جهت پایش تغییرات مکانی-زمانی خشکسالی در مناطق وسیع دارای تنوع اقلیمی همچون کشور ایران میباشد. پژوهش حاضر به منظور ارزیابی مقایسهای نتایج حاصل از پایش ماهانه وضعیت خشکسالی براساس دو شاخص مبتنی بر دادههای ماهوارهای در فصل رشد در بازه زمانی 21 ساله (2021-2001) در گستره ایران است. محاسبه شاخص شدت خشکسالی (DSI) و استخراج شاخص خشکسالی پالمر (PDSI) در بستر گوگل ارث انجین (GEE) انجام گردید. به علاوه، با استفاده از آزمون پیرسون، همبستگی دو متغیره بین مقادیر این دو شاخص شدت خشکسالی با متغیرهای هیدرواقلیمی شامل بارش (محصول ماهوارهای CHIRPS)، دما (LST سنجنده مودیس) و رطوبت خاک (محصولات GLDAS) و پوشش گیاهی (NDVI سنجنده مودیس) در هفت پهنه اقلیمی ایران مورد ارزیابی قرار گرفت. توزیع مکانی طبقات مختلف خشکسالی براساس مقادیر DSI و PDSI نشان داد که در سال 2001 (سال خشک) بهترتیب حدود 21 درصد و 99 درصد گستره ایران در شرایط خشکسالی و در سال 2020 (سال مرطوب) بهترتیب حدود 92 درصد و 73 درصد کشور در شرایط ترسالی قرار داشته است. براساس تغییرات زمانی مقادیر DSI و PDSI بهترتیب 25 و 75 درصد ماههای فصل رشد در بازه زمانی 21 ساله در گستره ایران، دارای وضعیت خشکسالی خفیف تا بسیار شدید (طبقات D2 تا D5) بودهاند. ارزیابی همبستگی دو متغیره بهتفکیک هفت پهنه اقلیمی کشور نشان داد که بین مقادیر DSI و PDSI در پهنههای اقلیمی فراخشک، خشک، نیمهخشک شدید و نیمهخشک میانه، رابطه مستقیم معنیدار وجود دارد و مقادیر DSI با درجه حرارت رابطه معکوس معنیدار و با بارش و رطوبت خاک رابطه مستقیم معنیدار دارند و همچنین با مقادیر NDVI دارای همبستگی مثبت قوی هستند. | ||
کلیدواژهها | ||
پهنههای اقلیمی؛ تبخیر و تعرق؛ سنجنده مودیس؛ طبقات شدت خشکسالی؛ گوگل ارث انجین | ||
عنوان مقاله [English] | ||
Spatiotemporal changes of two satellite-based drought indices and their correlations with hydroclimate and vegetation variables across Iran | ||
نویسندگان [English] | ||
Hasan Moradyannasab1؛ Ali Reza Nafarzadegan2؛ Yahya Esmaeilpour3 | ||
1M.Sc. Graduate of Watershed Sciences and Engineering, Department of Natural Resources Engineering, University of Hormozgan, Bandar Abbas, Iran | ||
2Assistant Professor, Department of Natural Resources Engineering, University of Hormozgan, Bandar Abbas, Iran | ||
3Associate Professor, Department of Natural Resources Engineering, University of Hormozgan, Bandar Abbas, Iran | ||
چکیده [English] | ||
Drought is one of the most widespread and costly natural disasters that mankind is facing. The use of remote sensing-based indices is one of the efficient tools for monitoring the spatiotemporal changes of drought in vast regions with climate diversity such as Iran. The purpose of this research is to compare the results of the monthly monitoring of the drought condition based on two satellite-based indices in the growing season over a period of 21 years (2001-2021) across Iran. The drought severity index (DSI) computation and the Palmer drought severity index (PDSI) extraction was carried out through the Google Earth Engine (GEE) platform. In addition, the bivariate correlation (Pearson Test) of the values of these two indices of drought severity with hydroclimate variables including precipitation (CHIRPS satellite product), temperature (MODIS LST), and soil moisture (GLDAS products) as well as vegetation cover (MODIS NDVI) was assessed in seven different climate zones of Iran. The spatial distribution of the different categories of drought severity based on the values of DSI and PDSI showed that in 2001 (dry year) about 21% and 99% of the area of Iran was affected by drought and in 2020 (wet year) about 92% and 73% of the country was affected by wet conditions. Based on the temporal variations of DSI and PDSI values, mild to extreme drought conditions (categories D2 to D5) prevailed in 25% and 75% of the months of the growing season in the 21-year period across Iran. Examination of the bivariate correlation across each of the seven climate zones showed that there is a significant direct relationship between DSI and PDSI values in the absolute arid, arid, slightly semi-arid, and moderately semi-arid climate zones and that the DSI values have a significant inverse relationship with temperature and a significant direct relationship with rainfall and soil moisture as well as a strong positive correlation with the NDVI values. | ||
کلیدواژهها [English] | ||
Climate zones, Drought severity categories, Evapotranspiration, Google Earth Engine, MODIS sensor | ||
مراجع | ||
[1]. Abdollahi, S., Bazrafshan, O., & Shekari, M. (2022). Trend Analysis of Drought Characteristics in Iran Using Univariate and Multivariate Idices. Irrigation and Water Engineering, 12(4), 334-353. doi: 10.22125/iwe.2022.150751 [in Farsi]
[2]. Akimov, L. M. (2013). Space-time patterns of atmospheric droughts in Voronezh oblast during growing period. Arid ecosystems, 3(2), 65-70. doi: 10.1134/ S2079096113020029
[3]. Ali, S., Basit, A., Ni, J., Manzoor, Khan, F. U., Sajid, M., Umair, M., & Makanda, T. A. (2023). Impact assessment of drought monitoring events and vegetation dynamics based on multi-satellite remote sensing data over Pakistan. Environmental science and pollution research international, 30(5), 12223–12234. doi: 10.1007/s11356-022-22995-w
[4]. Alley, W. M. (1984). The Palmer drought severity index: limitations and assumptions. Journal of Applied Meteorology and Climatology, 23(7), 1100-1109. doi: 10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2
[5]. Angearu, C. V., Ontel, I., Boldeanu, G., Mihailescu, D., Nertan, A., Craciunescu, V., ... & Irimescu, A. (2020). Multi-temporal analysis and trends of the drought based on MODIS data in agricultural areas, Romania. Remote Sensing, 12(23), 3940. doi: 10.3390/rs12233940
[6]. Babaei, F., Vaezi, A., Teheri, M., Zarrinabadi, E., & Eslami, S. F. (2015). Development a regression relationship between rainfed wheat yield and soil properties in a semiarid region, Zanjan Province. Iranian Journal of Soil and Water Research, 46(4), 715-725. doi: 10.22059/IJSWR.2015.56795 [in Farsi]
[7]. Elhag, K. M., & Zhang, W. (2018). Monitoring and assessment of drought focused on its impact on sorghum yield over Sudan by using meteorological drought indices for the period 2001–2011. Remote Sensing, 10(8), 1231. doi: 10.3390/rs10081231
[8]. Fentaw, A. E., Yimer, A. A., & Zeleke, G. A. (2023). Monitoring spatio-temporal drought dynamics using multiple indices in the dry land of the upper Tekeze Basin, Ethiopia. Environmental Challenges, 13, 100781. doi: 10.1016/j.envc.2023.100781
[9]. Ha, T. V., Uereyen, S., & Kuenzer, C. (2023). Agricultural drought conditions over mainland Southeast Asia: Spatiotemporal characteristics revealed from MODIS-based vegetation time-series. International Journal of Applied Earth Observation and Geoinformation, 121, 103378. doi: 10.1016/j.jag.2023.103378
[10]. Haroon, M. A., Zhang, J., & Yao, F. (2016). Drought monitoring and performance evaluation of MODIS-based drought severity index (DSI) over Pakistan. Natural Hazards, 84, 1349-1366. doi: 10.1007/s11069-016-2490-y
[11]. Heim Jr, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149-1166. doi: 10.1175/1520-0477-83.8.1149
[12]. Hosseini, A. S., Zare, M., & Mokhtari, M. H. (2019). Estimating the potential evapotranspiration (PET) using satellite imagery in arid lands. Environmental Engineering & Management Journal (EEMJ), 18(9), 1995-2008.
[13]. Keyantash, J., & Dracup, J. A. (2002). The quantification of drought: an evaluation of drought indices. Bulletin of the American Meteorological Society, 83(8), 1167-1180. doi: 10.1175/1520-0477-83.8.1167
[14]. Khan, R., & Gilani, H. (2021). Global drought monitoring with drought severity index (DSI) using Google Earth Engine. Theoretical and Applied Climatology, 146(1), 411-427. doi: 10.1007/s00704-021-03715-9
[15]. Kheyri, R., Mojarrad, F., Masompour, J., & Farhadi, B. (2021). Evaluation of drought changes in Iran using SPEI and SC-PDSI. The Journal of Spatial Planning, 25(1), 143-174. doi: 20.1001.1.16059689.1400.25.1.6.1 [in Farsi]
[16]. Melkonyan, A. (2014). Environmental and socio-economic vulnerability of agricultural sector in Armenia. Science of the Total Environment, 488, 333-342. doi: 10.1016/j.scitotenv.2014.03.126
[17]. Meza, I., Siebert, S., Döll, P., Kusche, J., Herbert, C., Eyshi Rezaei, E., ... & Hagenlocher, M. (2020). Global-scale drought risk assessment for agricultural systems. Natural Hazards and Earth System Sciences, 20(2), 695-712. doi: 10.5194/nhess-20-695-2020
[18]. Mottaghi, S., Akbari, G. A., Minbashi, M., Allahdadi, I., Zand, E., & Lotfifar, O. (2012). The study of dispersal of english title dominant grass weeds of irrigated wheat fields of Iran and determine the effective environmental factors. Plant Production Technology, 11(2), 13-24. [in Farsi]
[19]. Mu, Q., Zhao, M., Kimball, J. S., McDowell, N. G., & Running, S. W. (2013). A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, 94(1), 83-98. doi: 10.1175/BAMS-D-11-00213.1
[20]. Nafarzadegan, A. R., Ebrahimi-Khusfi, Z., & Kazemi, M. (2021). Spatial characterization of dust emission prone arid regions using feature extraction and predictive algorithms. Applied Geography, 133, 102495. doi: 10.1016/j.apgeog.2021.102495
[21]. Palmer, W. C. (1965). Meteorological drought, Research Paper No. 45: US Weather Bureau. Office of Climatology, US Weather Bureau, Washington DC.
[22]. Selyaninov, G. T. (1928). On agricultural climate valuation. Proc. Agric. Meteor, 20, 165-177.
[23]. Torabinezhad, N., Zarrin, A., & Dadashi-Roudbari, A. A. (2023). Analysis of Different Types of Droughts and Their Characteristics in Iran Using the Standardized Precipitation Evapotranspiration Index (SPEI). Water and Soil, 37(3), 473-486. doi: 10.22067/JSW.2023.81322.1257 [in Farsi]
[24]. Wang, K., Li, T., & Wei, J. (2019). Exploring drought conditions in the three river headwaters region from 2002 to 2011 using multiple drought indices. Water, 11(2), 190. doi: 10.3390/w11020190
[25]. Zandifar, S., Jalili, A., Saieedifar, Z., & Naeimi, M. (2022). Assessing drought and human interface on reducing groundwater reserves. Iranian Journal of Forest and Range Protection Research, 20(1), 199– 218. doi: 10.22092/ijfrpr.2022.356091.1513 [in Farsi]
[26]. Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19, 333-349. doi: 10.1139/a11-013
[27]. Zhao, X., Xia, H., Pan, L., Song, H., Niu, W., Wang, R., ... & Qin, Y. (2021). Drought monitoring over Yellow River basin from 2003–2019 using reconstructed MODIS land surface temperature in Google Earth Engine. Remote Sensing, 13(18), 3748. doi: 10.3390/rs13183748 | ||
آمار تعداد مشاهده مقاله: 342 تعداد دریافت فایل اصل مقاله: 156 |