
Journal of Statistical Modelling: Theory and Applications
Vol. 4, No. 2, 2023, pp. 17-34
Yazd University Press 2023

Research Paper

Least square regression in intuitionistic fuzzy environment with
crisp coefficients with the ability to determine the decision level

Zahra Behdani∗, Majid Darehmiraki
Department of Mathematics and Statistics, Behbahan Khatam Alanbia

University of Technology, Khouzestan, Iran

Received: February 04, 2024/ Revised: April 20, 2024/ Accepted: May 22, 2024

Abstract: In practical problems where imprecise components are an inseparable part
of them, using fuzzy sets to check their features and measure their efficiency solves
some of the current limitations. In this article, we examine the problem of linear re-
gression in an intuitionistic fuzzy environment. Here, we consider the input and output
data as intuitionistic fuzzy numbers and assume that the coefficients of the model are
crisp numbers. Since to correctly determine the coefficients, we need to calculate the
distance between the output of the model and the output data, we present a new para-
metric distance to calculate the distance between intuitionistic fuzzy numbers. The
salient point in this article is that the researcher can estimate the parameter values of
the model based on different decision-making levels. To show the efficiency and test the
proposed method, several examples are presented at the end of the article. The results
are calculated and compared based on the values of different levels of decision-making.
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1 Introduction
Finding the relationship between independent and dependent variables is one of the
concerns of data science experts. Regression models are among the statistical methods
that have the ability to find this relationship. Regression models are used in various
sciences such as medicine, engineering, social sciences, etc Khasanzoda et al. (2022). In
many cases, the data we are facing is inaccurate or the relationship between them is not
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accurate. This inaccuracy may be caused by the way of measurement or related to the
essence of the problem. In order to deal with this indeterminacy correctly, it is necessary
to go to fuzzy sets or fuzzy logic in such cases and use fuzzy numbers and relationships.
After fuzzy logic was first introduced by Zadeh in 1968, researchers and scientists active
in this field presented various extensions for it, including: intuitive fuzzy, bipolar fuzzy,
hesitant fuzzy, second type fuzzy and... . In this paper, we investigate regression models
in an intuitive fuzzy environment with a proposed distance measure. In the following,
we will review some of the works done in this field.

Hazarika et al. (2021) used kernel ridge regression in intuitionistic fuzzy enviro-
ment. Egrioglu and Bas (2023) presented a robust regression model in an intuitive
fuzzy environment, which is more robust to outlier data. Arefi and Taheri (2014)
used a least squares estimation to solve the regression model with intuitionistic fuzzy
data. Hassamian and Akbari proposed a semi-parametric method to investigate logis-
tic regression in intuitive fuzzy space with exact inputs and intuitionistic fuzzy output
Hesamian et al. (2020). The authors of paper Hesamian and akbari (2023) used the
ridge estimator for partial logistic regression with intuitionistic fuzzy outputs and coef-
ficients. Chakravarty et al. (2022) proposed a new regression function by using a noise
cluster to deal with outlier data. Pang et al. (2022) presented a polynomial regression
model based on fuzzy c-means clustering. They applied polynomial regression as center
of each cluster. Hesamian and akbari (2023) proposed a new fuzzy regression model
for exact inputs and fuzzy output using Gaussian process and non-parametric Bayesian
method. Choi et al. (2019) estimated the parameters of the ridge regression model us-
ing the α-level estimation method. Nguyen et al. (2023) used Generative Adversarial
Networks for the first time in order to improve the fuzzy regression model.

Both the distance between IFSs and the degree of similarity between them are rela-
tive concepts that can be calculated. In most cases, we can take use of IFSs’ potential
utility across disciplines by employing distance and similarity measurements. As a re-
sult, a wide range of approaches are being used to construct these tools. The hunt for
novel distance and similarity measures continues, despite the fact that a fair number of
them already exist. Researchers then started looking into how comparable and different
IFSs could be compared to one another. Szmidt and Kacprzyk (2000) created an IFS
membership parameter distance in 2000. In other circumstances, Wang and Xin (2005)
said their metric is insufficient to measure distances. Thus, Grzegorzewski (2004) cre-
ated Hausdorff-based distance metrics. Chen (2007) later asserted that Grzegorzewski’s
distance formula’s distance property inequalities are invalid. Hung and Yang (2007)
introduced the Lp metric for IFS distance measures. Hung and Yang (2008) created
fuzzy entropy-based distance measurements and successfully induced specific similarity
measures on IFSs. Yang and Chiclana Yang and Chiclana (2012) created a 3D dis-
tance using the Hausdorff metric and proved its compatibility with 2D. Hatzimichai-
lidis et al. (2012) created a distance metric using membership and non membership
degree matrices’ eigenvalues. Chen and Deng (2020) introduced three distance mea-
sures: Hamming-hesitation, Hamming-cosine, and Euclidean-hesitation. In addition,
Mahanta and Panda Mahanta and Panda (2021) created a novel distance metric to
address IFSs’ high information reluctance. In a recent study on distance and similarity
metrics, Garg and Rani (2021) updated Jiang et al. (2019) by employing right-angled
triangles instead of isosceles triangles. Arefi and Taheri (2014) applied the least square
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regression for intuitionistic fuzzy data. Leski (2023) proposed a double-ordered fuzzy
c-regression models based on fuzzy S-estimator. Very recently, Hesamian et al. (2024)
presented a fuzzy nonparametric fuzzy regression via the Nadaraya–Watson estimator.

Considering the increasing use of data science tools for data analysis, in this article
the multivariate regression model has been investigated in the fuzzy environment. Al-
though, as mentioned earlier, this problem has been investigated by other researchers,
but in this article, by defining a parametric distance measure, we tried to examine this
problem from a new perspective. Since our distance measure is a parametric distance
measure and the distance between two fuzzy numbers is measured at different levels,
therefore, when estimating the parameters in our regression model, we can estimate
the parameters at different decision levels. For example, if the alpha cut of fuzzy num-
bers is done with values close to 1 for the membership function and close to zero for
the non-member functions, then the fitted model can be called a model with a high
decision level. In summary, here by changing the values of alpha cut, we can estimate
different models for a set of fuzzy data.

In the continuation of the article, in the next section, some of the prerequisites
required in relation to the calculation of fuzzy numbers are stated. In the Section 3, a
new fuzzy distance is introduced and with its help, an intuitive fuzzy regression model
with fuzzy inputs and outputs is proposed. Two numerical examples, one of which is
practical, are provided to show the efficiency of the model in the Section 4. Finally, in
the Section 5 of the article, the conclusion is drawn.

2 Intuitionistic fuzzy arithmetic
In this section, we will state the fuzzy definitions needed in the continuation of the
work.

Definition 2.1. Suppose X be a universe. An intuitionistic fuzzy set (IFS) is defined
as

Â = {⟨x, µÂ(x), νÂ(x)|x ∈ X⟩},
where µÂ(x) and νÂ(x) are the degrees of membership and nonmembership functions,
respectively.

It should also be noted that

0 ≤ µÂ(x), νÂ(x) ≤ 1, 0 ≤ µÂ(x) + νÂ(x) ≤ 1.

In the case of intuitive fuzzy sets, sometimes another component called the hesitation
function is introduced as follows

πÂ(x) = 1− µÂ(x)− νÂ(x).

Definition 2.2. If Â = (µÂ, νÂ) be an IFN in set of real number R then we have

µÂ(x) =


f(x), a ≤ x ≤ b,

1, b ≤ x ≤ c,

g(x), c ≤ x ≤ d,

0, otherwise,
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νÂ(x) =


h(x), a′ ≤ x ≤ b′,

o, b′ ≤ x ≤ c′,

r(x), c′ ≤ x ≤ d′,

1, otherwise,

where f(x) and r(x) are nondecreasing continuous functions and g(x) and h(x) are
nonincreasing continuous functions. Also a′ ≤ a, b′ ≤ b ≤ c ≤ c′, d ≤ d′.

The authors of Ma et al. (1999) proposed another form for displaying fuzzy numbers
in which the dependent and independent variables have been changed. By extending
this representational form, we can define IFNs as follows.

Definition 2.3. Let Â = (µ′, ν′) be an IFN, where µ′ is a pair (p, p) of functions
0 ≤ r ≤ 1 are satisfied in following conditions
1. p is a bounded monotonic increasing left continuous function,
2. p is a bounded monotonic decreasing left continuous function,
3. p ≤ p, 0 ≤ r ≤ 1,
and ν′ is a pair (q, q) of functions 0 ≤ r ≤ 1 are satisfied in following conditions
1. q is a bounded monotonic decreasing left continuous function,
2. q is a bounded monotonic increasing left continuous function,
3. q ≤ q, 0 ≤ r ≤ 1.

According to Definition 2.3, trapezoidal intuitionistic fuzzy numbers (TraIFN) Â =
(µ′, ν′) can be defined as follows: µ′(r) = (p(r), p(r)) = (a+ r(b− a), d+ r(c− d)) and
ν′(r) = (q, q) = (a′ + (1− r)(b′ − a′), d′ + (1− r)(c′ − d′)), 0 ≤ r ≤ 1.

Definition 2.4. Let Ã = (u1, u1, v1, v1) and B̃ = (u2, u2, v2, v2) be two IFNs. The
parametric distance between two numbers is defined as follows

dα,β(Ã, B̃) =

[∫ 1

α

(u1 − u2)
2 + (u1 − u2)

2dr +

∫ β

0

(v1 − v2)
2 + (v1 − v2)

2dr

] 1
2

. (1)

Theorem 2.5. The defined function (1) is a meter, which means it applies to the
following properties:
1. dα,β(Ã, B̃) ≥ 0, d(Ã, Ã) = 0.
2. dα,β(Ã, B̃) = d(B̃, Ã).
3. dα,β(Ã, C̃) ≤ d(Ã, B̃) + d(B̃, C̃).

Proof. Items 1 and 2 are clear. For item 3, we have:

dα,β(Ã, C̃) =

[∫ 1

α

(uÃ − uC̃)
2 + (uÃ − uC̃)

2dr +

∫ β

0

(vÃ − vC̃)
2 + (vÃ − vC̃)

2dr

] 1
2

=

[∫ 1

α

(uÃ − uB̃ + uB̃ − uC̃)
2 + (uÃ − uB̃ + uB̃ − uC̃)

2dr

+

∫ β

0

(vÃ − vB̃ + vB̃ − vC̃)
2 + (vÃ − vB̃ + vB̃ − vC̃)

2dr

] 1
2
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≤
[∫ 1

α

(uÃ − uB̃)
2 + (uB̃ − uC̃)

2 + (uÃ − uB̃)
2 + (uB̃ − uC̃)

2dr

+

∫ β

0

(vÃ − vB̃)
2 + (vB̃ − vC̃)

2 + (vÃ − vB̃)
2 + (vB̃ − vC̃)

2dr

] 1
2

≤ d(Ã, B̃) + d(B̃, C̃).

Assume Ã = (a, p, q, p′, q′) and B̃ = (b, t, s, t′, s′) be two LR IFNs. Then

d2α,β(Ã, B̃) = 2(a− b)2 + (t− p)2
∫ 1

α

(R−1(r))2dr + (t′ − p′)2
∫ β

0

(R−1(r))2dr

+(q − s)2
∫ 1

α

(L−1(r))2dr + (q′ − s′)2
∫ β

0

(L−1(r))2dr

+(a− b)(t− p)

∫ 1

α

L−1(r)dr + (a− b)(t′ − p′)

∫ β

0

L−1(r)dr

−(a− b)(s− q)

∫ 1

α

L−1(r)dr − (a− b)(s′ − q′)

∫ β

0

L−1(r)dr.

In a special case where two numbers are triangular, we have

d2α,β(Ã, B̃) = 2(a− b)2[1− α] + (t− p)2(
(1− α)3

3
) + (t′ − p′)2(

β3

3
)

+(q − s)2(
(1− α)3

3
) + 2(a− b)2β + (q′ − s′)2(

β3

3
)

+2(a− b)(t− p)(
1

2
− α+

α2

2
) + 2(a− b)(t′ − p′)(

β2

2
)

−2(a− b)(s− q)(
1

2
− α+

α2

2
)− 2(a− b)(s′ − q′)(

β2

2
).

With simplify the above equation we have

d2α,β(Ã, B̃) = 2(1− α+ β)[(a− b)2] +
(1− α)3

3
[(p− t)2 + (q − s)2]

+
β3

3
[(p′ − t′)2 + (q′ − s′)2] + (1− α)2(a− b)[(t− p)− (s− q)]

+β2(a− b)[(t′ − p′)− (s′ − q′)].

Remark 2.6. To use this meter, we first scale the data.

Example 2.7. Let Ã = (3, 2, 1, 1, 2) and B̃ = (5, 1, 1, 1, 1) be two TriIFNs. In this
case, we have

d2α,β(Ã, B̃) =
(1− α)3

3
× 0.2355 +

β3

3
× 0.2355.

Table 1 shows the value of distance Ã and B̃ for different α and β. Also, in Figure
1, you can see the membership function of two IFNs Ã and B̃. that alpha and beta
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represent different levels of decision making. As alpha increases, a higher decision level
is selected, and conversely, if alpha is a lower value, it means that this problem is solved
at a lower level of decision making. It is the opposite for beta, i.e. a low beta value
indicates problem solving at a higher level of decision making. The data in the Table
1 shows that the distance between these two fuzzy numbers for members of the set that
have a membership function of 0.8 and a non-membership function of 0.2 is equal to
0.0012 (second row of the table). The members of the set whose membership is less
than 0.4 and their non-membership is 0.8 is estimated at 0.0572.

Figure 1: Membership functions of Ã and B̃ in Example 2.7.

Table 1: Ã and B̃ distance values for different α and β in Example 2.7.
α β d2α,β(Ã, B̃)

1 0.2 0.8 0.0804
2 0.8 0.2 0.0012
3 0.5 0.5 0.0196
4 0.4 0.8 0.0572
5 0.6 0.6 0.0220
6 0.3 0.4 0.0320
7 0.0 1.0 0.1570
8 1 0 0

3 Regression model
Regression models provide models based on which the relationship between independent
variables (explanatory) and dependent variable (response) can be investigated. These
functional models are designed to predict and control the response variable. If we
encounter imprecise variables or imprecise relationships, or if (for example, due to a
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small sample size) it is not possible to ensure the correctness of some assumptions,
common models lose their validity and efficiency. Then fuzzy regression can provide us
with a more suitable model. Based on the fact that each of the received quantities are
fuzzy or accurate, the four different categories of the regression model are obtained
1. Fuzzy regression in the case that the relationships between the variables are assumed
to be fuzzy.
2. Fuzzy regression in the case that the observations in the response variable and
independent variables are imprecise and fuzzy.
3. Fuzzy regression in the case where independent observations are exact numbers,
model coefficients and observed responses are fuzzy numbers.
4. Fuzzy regression in the case that both the relationships between the variables and
the observations are fuzzy.

In classical regression, it is assumed that the variables and their related observations
are accurate. Also the difference between the observed value for the dependent variable
and the value obtained through the model, and the overall error of the model, is at-
tributed to the random error related to observations and measurements, the absence of
some variables, etc. About these random error statements and its possible distribution,
assumptions such as normality, non-correlation, stability of variance... are considered.
Based on these assumptions, statistical analysis such as estimation of parameters, pre-
diction of the value of the dependent variable and hypothesis tests related to the model
can be performed. But in many cases, one or more of the above assumptions may not
be true, or, for example, due to the small sample size, it is not possible to ensure
the correctness of some assumptions. For example, in a study, observations related
to variables may be inaccurate or inaccurately reported; Or the variables under study
may have an imprecise relationship. Also, assumptions such as normality and non-
correlation of random error sentences may not hold. In such a situation, classical tools
cannot provide suitable criteria for data modelling. One of the possible ways is to use
the concept of fuzzy sets to model data in such conditions.

In linear regression with fuzzy input and output, it is assumed that coefficients are
positive crisp numbers and ambiguity there exist in the input and output.

Ỹi = c0 + c1X̃i1 + c2X̃i2 + c3X̃i3 + . . .+ cmX̃im + ϵi, i = 1, 2, . . . , n,

or

Ỹi = c0 +

m∑
j=1

cjX̃ij + ϵi, i = 1, 2, . . . , n.

Based on observations

(Ỹi, X̃i1 , X̃i2 , . . . , X̃im), i = 1, 2, . . . , n,

where c0, c1, . . . , cm are model coefficients. To simplify the relationships, we assume
that the regression and independent variables of both intuitive triangular symmetric
fuzzy numbers are as follows

Ỹi = (yi, li, ri, l
′
i, r

′
i), i = 1, 2, . . . , n,

X̃ij = (xij , sij , wij , s
′
ij , w

′
ij), i = 1, 2, . . . , n, , i = j, 2, . . . ,m.
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Our goal here is to find the coefficients ci, i = 1, 2, . . . ,m so that the distance between
the ˆ̃Yi = (µ ˆ̃Yi

, ν ˆ̃Yi
) and Ỹi = (µỸi

, νỸi
) is the smallest. For this purpose, the following

minimization problem based on the distance defined in Definition 2.3 should be solved

minimize

n∑
i=1

d2( ˆ̃Y i, Ỹi).

The occurrence of multiple collinearity between the predictor variables in the linear
regression analysis may cause severe instability in the estimates of the least squares of
the regression parameters, which means that the magnitude and sign of the parameters
in different samples are significantly unstable. It will be that as a result, the estimation
of the lowest second power obtained will not be reliable. The least squares function is
written as follows

S(c0, c1, . . . , cm) =

n∑
i=1

(d2α,β(
ˆ̃Y i, Ỹi)) =

n∑
i=1

2(1− α+ β)(yi − c0 −
m∑
j=1

cjxij)
2

+(
(1− α)3

3
)[(li − c0 −

m∑
j=1

cjsij)
2 + (ri − c0 −

m∑
j=1

cjwij)
2]

+(
β3

3
)[(l′i − c0 −

m∑
j=1

cjs
′
ij)

2 + (r′i − c0 −
m∑
j=1

cjw
′
ij)

2]

+(1− α)2(yi − c0 −
m∑
j=1

cjxij)[(li − c0 −
m∑
j=1

cjsij)

−(ri − c0 −
m∑
j=1

cjwij)] + (β2)(yi − c0 −
m∑
j=1

cjxij)

×[(l′i − c0 −
m∑
j=1

cjs
′
ij)− (r′i − c0 −

m∑
j=1

cjw
′
ij)].

This function should be minimized with respect to c0, c1, . . . , cm. If we write these
equations in the form of a matrix, the data and results will be displayed more compactly.
For this purpose, we write the least squares equation as follows

S(c0, c1, . . . , cm)=2(1− α+ β)((Y −XC)′(Y −XC)) +A((L− SC)′(L− SC)

+(R−WC)′(R−WC)) +B((L⋆ − S⋆C)′(L⋆ − S⋆C)

+(R⋆ −W ⋆C)′(R⋆ −W ⋆C)) +D[(Y −XC)′((L− SC)

−(R−WC))] + E[(Y −XC)′((L⋆ − S⋆C)− (R⋆ −W ⋆C))],

where in A =
(1− α)3

3
, B =

β3

3
, D = (1− α)2 and E = β2

Y =


y1
y2
.
.
.
yn

 , L =


l1
l2
.
.
.
ln

 , R =


r1
r2
.
.
.
rn

 , L⋆ =


l′1
l′2
.
.
.
l′n

 , R⋆ =


r′1
r′2
.
.
.
r′n

 ,
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X =


1 x11 x12 . . . x1m
1 x21 x22 . . . x2m
. . . . . . .
. . . . . . .
. . . . . . .
1 xn1 xn2 . . . xnm

 , S =


1 s11 s12 . . . s1m
1 s21 s22 . . . s2m
. . . . . . .
. . . . . . .
. . . . . . .
1 sn1 sn2 . . . snm

 ,

W =


1 w11 w12 . . . w1m
1 w21 w22 . . . w2m
. . . . . . .
. . . . . . .
. . . . . . .
1 wn1 wn2 . . . wnm

 , S⋆ =


1 s′11 s′12 . . . s′1m
1 s′21 s′22 . . . s′2m
. . . . . . .
. . . . . . .
. . . . . . .
1 s′n1 s′n2 . . . s′nm

 ,

W ⋆ =


1 w′

11 w′
12 . . . w′

1m
1 w′

21 w′
22 . . . w′

2m
. . . . . . .
. . . . . . .
. . . . . . .
1 w′

n1 w′
n2 . . . w′

nm

 , C =


c0
c1
.
.
.
cm

 .

The least squares estimators should apply in the following relationship

∂S(c0, c1, . . . , cm)

∂C

∣∣∣∣
Ĉ

= 0.

Therefore, the least squares estimator of C, under the condition of having the inverse
of D, becomes as follows.

Ĉ=

(
4(1− α+ β)X ′X + 2A(S′S +W ′W ) + 2B(S⋆′

S⋆ +W ⋆′
W ⋆)

+D(X ′S −X ′W ) + E(X ′S⋆ −X ′W ⋆)

)−1

×
(
4(1− α+ β)X ′Y + 2A(S′L+W ′R) + 2B(S⋆′

L⋆ +W ⋆′
R⋆)

+D((S −W )′Y +X ′(L−R)) + E((S⋆ −W ⋆)′Y +X ′(L⋆ −R⋆))

)
.

If the triangular fuzzy numbers are intuitively symmetric, then L = L⋆, R = R⋆,
S = S⋆ and W = W ⋆. In this case, the least squares estimator is equal to:

Ĉ=(4(1− α+ β)X ′X + 2(S′S +W ′W )(A+B)

+(X ′S −X ′W )(D + E))−1(4(1− α+ β)X ′Y + 2(S′L+W ′R)(A+B)

+((S −W )′Y +X ′(L−R))(D + E)). (2)

Considering that to use the meter introduced in definition 2.4, it is necessary to divide
the data of each variable by the maximum value, the middle points of each variable,
so the parameters estimated by this relationship are slightly different from the actual
parameters. The actual parameters can be found using the following transformation:

ˆCorgj = ˆCnewj ∗max yi/maxxij , j = 1, 2, ...,m, i = 1, 2, ..., n

ˆCorg0 = mean(y)−
m∑
j=1

ˆCorgj ∗mean(xj).
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In this model, the sum of squared error and mean squared error are calculated respec-
tively using the following relations.

SSE =

n∑
i=1

d2α,β(Ỹ , ˆ̃Y ), MSE =
1

n
SSE.

4 Numerical examples
This section illustrates how to use the proposed intuitionistic fuzzy linear least squares
regression model by presenting two numerical examples, one with simulated fuzzy num-
bers and the other with actual fuzzy numbers. The capabilities of the suggested regres-
sion model are evaluated alongside those of the another model already in existence.
Example 4.1. The inputs and outputs are all TriFN and the sample data are from
Table 3 in Sakawa and Yano (1992) where they were ordinary triangular numbers but
we have converted them to intuitive fuzzy triangular numbers here. In this example,
all the data are intuitive symmetric triangular fuzzy numbers whose non-membership
function is the same as the membership function (Table 2). In Table 3, the estimation
of the parameters of the data is recorded. Also, the predicted values for two points
x1 = (6, 0.75) and x2 = (9, 0.43) have been calculated and the obtained values are
recorded in the 5th and 6th columns of the Table 3. Values are calculated for different
decision levels of α and β. As the value of alpha increases, the estimate of the slope
of the line decreases while the width from the origin increases. while with the increase
of beta, the slope increases and the width from the intercept decreases. Figures 2 to 5
show the observed and fitted values at different alpha and beta levels. Figure 1 shows
the membership functions for the estimated values and the observed values. As can be
seen, the membership functions of the two values are relatively close to each other.

Table 2: Sample data in Sakawa and Yano (1992).
No. X Y
1 (2; 0.5)T (4.5, 0.5)T
2 (3.5; 0.5)T (5.5, 0.5)T
3 (5.5, 1)T (7.5, 1)T
4 (7, 0.5)T (6.5, 0.5)T
5 (8.5, 0.5)T (8.5, 1)T
6 (10.5, 1)T (8, 1)T
7 (11, 0.5)T (10.5, 0.5)T
8 (12.5, 0.5)T (9.5, 0.5)T

For example, at the decision level greater than 0.99, the values of C0 and C1 are
equal to 3.8497 and 0.4909, respectively. Also, the prediction of two x1 = (6, 0.75) and
x2 = (9, 0.43) points is (6.7954, 0.3582) and (8.2682, 0.2111) based on this model. As
you can see, as the decision level and alpha value increase, the median value increases
while the width of the triangle decreases. Figures 3, 4, and 5 show the estimated values
and the observed values for different values of α and β, which are actually different
levels of decision making.

Table 4 contains information about sum of squared error and MSE for Example 4.1.
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Table 3: Estimated model parameters and prediction values for two x1 = (6, 0.75) and
x2 = (9, 0.43) points at different levels of α and β decision making for the data in Table
2.

α β ĈNew = (C0, C1)New Ĉ = (C0, C1)
ˆ̃Y1 = (ŷ, l̂) ˆ̃Y2 = (ŷ, l̂)

1 0.2 0.8 (0.1849,0.8281) (2.3018,0.6956) (6.4756,0.5217) (8.5624,0.2991)
2 0.8 0.2 (0.3448,0.6137) (3.6636,0.5155) (6.7569,0.3867) (8.3036,0.2217)
3 0.5 0.5 (0.2634,0.7229) (2.9701,0.6073) (6.6136,0.4554) (8.4354,0.2611)
4 0.4 0.8 (0.2033,0.8035) (2.4582,0.6749) (6.5079,0.5062) (8.5327,0.2902)
5 0.6 0.6 (0.2549,0.7343) (2.8978,0.6168) (6,5987,0.4626) (8.4492,0.2652
6 0.3 0.4 (0.2326,0.7642) (2.7076,0.6420) (6.5594,0.4815) (8.4853,0.2760)
7 0 1 (0.1463,0.8799) (1.9729,0.7391) (6.4076,0.5543) (8.6250,0.3178)
8 0.990.01 (0.3666,0.5845) (3.8497,0.4909) (6.7954,0.3582) (8.2682,0.2111)
9 0.4 0.3 (0.2574,0.7306) (2.9213,0.6137) (6.6035,0.4603) (8.4447,0.2639)

Figure 2: Membership functions of ỹ and ˜̂y , α = 0.99, β = 0.01 in Example 4.1.

Table 4: Ỹ and ˆ̃Y distance values for different α and β in Example 4.1.
α β

∑8
i=1 d

2
α,β(Ỹ , ˆ̃Y ) MSE

1 0.2 0.8 2.8349 0.3543
2 0.8 0.2 0.0816 0.0102
3 0.5 0.5 0.7460 0.0932
4 0.4 0.8 2.0408 0.2551
5 0.6 0.6 0.8251 0.1031
6 0.3 0.4 1.1690 0.1461
7 0.0 1.0 5.4078 0.6760
8 0.99 0.01 0.0022 0.0003
9 0.4 0.3 0.7189 0.0898

Remark 4.2. To check the stability of the coefficients with respect to data changes
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Figure 3: Membership functions of ỹ and ˜̂y , α = 0.3, β = 0.4 (left) and α = 0.4, β = 0.3 (right) in
Example 4.1.

Figure 4: Membership functions of ỹ and ˜̂y , α = 0.2, β = 0.8 (left) and α = 0.8, β = 0.2 (right) in
Example 4.1.

Figure 5: Membership functions of ỹ and ˜̂y , α = 0.5, β = 0.5 (left) and α = 0.6, β = 0.6 (right) in
Example 4.1.
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or the impact of outliers on the coefficients, we changed the values of x and y and
re-estimated the regression coefficients for different values of α and β. The results and
its comparison with the initial coefficients can be seen in Table 5. x1 = (15, 1)T and
y1 = (8, 0.5)T . We also changed the values x7 = (2.5, 0.5)T and y7 = (3, 0.5)T .

Table 5: Estimate the parameters of the model by changing the first and seventh
samples separately with fuzzy numbers x1 = (15, 1)T and y1 = (8, 0.5)T and x7 =
(2.5, 0.5)T and y7 = (3, 0.5)T in Example 4.1.

α β ĈNew(1) = (C0, C1)New(1) Ĉ = (C0, C1) ĈNew(7) = (C0, C1)New(7)

1 0.2 0.8 (2.7432, 0.5722) (2.3018, 0.6956) (2.2263, 0.6767)
2 0.8 0.2 (5.0346, 0.3228) (3.6636, 0.5155) (3.1541, 0.5340)
3 0.5 0.5 (3.7831, 0.4590) (2.9701, 0.6073) (2.7114, 0.6021)
4 0.4 0.8 (2.9737, 0.5471) (2.4582, 0.6749) (2.3456, 0.6584)
5 0.6 0.6 (3.6634, 0.4720) (2.8978, 0.6168) (2.6619, 0.6097)
6 0.3 0.4 (3.3572, 0.5053) (2.7076, 0.6420) (2.5283, 0.6302)
7 0 1 (2.2814, 0.6224) (1.9729, 0.7391) (1.9628, 0.7172)
8 0.99 0.01 (5.4057, 0.2824) (3.8497, 0.4909) (3.2637, 0.5171)
9 0.4 0.3 (3.7022, 0.4678) (2.9213, 0.6137) (2.6781, 0.6072)

As it is known, the stability of the model decreases with the increase of alpha value.
But instead, for small alpha values, the model is almost robust. Also, when the beta
values are large, the parameter estimates have changed less.
Example 4.3. Despite the fact that it is essential, measuring the cation exchange
capacity of soils, also known as CEC, which is one of the significant chemical properties
that affects other physical, hydraulic, fertility, and biological characteristics of the soil,
is highly expensive and time-consuming. It is also one of the important chemical
properties that affects other physical properties of the soil. When trying to accurately
anticipate cation exchange capacity, it might be helpful to make use of certain physical
and chemical features that are simple to test and do not need a significant financial
investment. The goal of this study is to develop a regression model that is appropriate
for estimating the cation exchange capacity of tillage in the western areas of Iran by
making use of the quantity of sand and organic matter.
The dataset presented in Table 6 displays the triangular IFNs for cation exchange
capacity (CEC), sand content (SAND), and organic matter content (OM). Based on
the available data, our study aims to construct a regression model that can effectively
forecast the Cation Exchange Capacity (CEC) by using the explanatory variables of
Sand (SAND) and Organic Matter (OM).

Table 7 shows the estimated values and the given values for Example 4.3 at different
decision levels. We displayed the error values between the given values and the estimated
values by two methods of sum of squares and mean of squares for Example 4.3 in Table
8.

Figures 6 to 8 also show the difference between the observed values and the fitted
values at different levels of decision making.

For example, if in a new case, we observe X1 = (28; 2.8, 4.2)T and X2 = (2; 0.2, 0.3)T ,
then for different values for α and β we predict CEC as the IFN in Table 6. For ex-
ample, at the decision level of 0.4, or in other words, with members who have a mem-
bership function greater than0.4 and a non-membership function less than 0.8 (fourth
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Table 6: Some of measured soil characteristics (CEC,SAND and OM) as triangular
A-IFNs.

No. CEC(Cmol (+)/kg) SAND(%) OM(%)
Ỹi = (yi; li, ri)T X̃i1 = (xi1; si1, wi1)T X̃i2 = (xi2; si2, wi2)T

1 (16.5; 0.82, 1.65)T (35; 3.5, 5.25)T (0.88; 0.09, 0.13)T
2 (18.6; 0.93, 1.86)T (37; 3.7, 5.55)T (1.13; 0.11, 0.17)T
3 (19.3; 0.97, 1.93)T (27; 2.7, 4.05)T (1.31; 0.13, 0.2)T
4 (20.3; 1.02, 2.03)T (29; 2.9, 4.35)T (1.98; 0.2, 0.3)T
5 (17.3; 0.87, 1.73)T (38; 3.8, 5.70)T (1.02; 0.1, 0.15)T
6 (19.3; 0.97, 1.93)T (29; 2.9, 4.35)T (1.52; 0.15, 0.23)T
7 (20.4; 1.02, 2.04)T (32; 3.2, 4.8)T (1.29; 0.13, 0.19)T
8 (21.9; 1.09, 2.19)T (18; 1.8, 2.7)T (1.33; 0.13, 0.2)T
9 (15.9; 0.8, 1.59)T (40; 4.0, 6.0)T (1.71; 0.17, 0.26)T
10 (18.3; 0.92, 1.83)T (28; 2.8, 4.2)T (2; 0.2, 0.3)T
11 (22.6; 1.13, 2.26)T (13; 1.3, 1.95)T (1.68; 0.17, 0.25)T
12 (23.7; 1.19, 2.37)T (19; 1.9, 2.85)T (3.15; 0.22, 0.32)T
13 (24.4; 1.22, 2.44)T (31; 3.1, 4.65)T (3.52; 0.35, 0.53)T
14 (21.8; 1.09, 2.18)T (31; 3.1, 4.65)T (2.33; 0.23, 0.35)T
15 (23.8; 1.19, 2.38)T (17; 1.7, 2.55)T (1.71; 0.17, 0.26)T
16 (20.8; 1.04, 2.08)T (14; 1.4, 2.1)T (1.14; 0.11, 0.17)T
17 (17.5; 0.88, 1.75)T (19; 1.9, 2.85)T (0.99; 0.1, 0.15)T
18 (17.8; 0.89, 1.78)T (28; 2.8, 4.2)T (1.14; 0.11, 0.17)T
19 (20.2; 1.01, 2.02)T (26; 2.6, 3.9)T (1.46; 0.15, 0.22)T
20 (20.0; 1.00, 2.00)T (32; 3.2, 4.8)T (1.81; 0.18, 0.27)T
21 (22.8; 1.14, 2.28)T (10; 1.0, 1.5)T (1.38; 0.14, 0.21)T
22 (19.1; 0.96, 1.91)T (38; 3.8, 5.7)T (0.84; 0.08, 0.13)T
23 (12.1; 0.6, 1.21)T (49; 4.9, 7.35)T (1.48; 0.15, 0.22)T
24 (12.8; 0.64, 1.28)T (42; 4.2, 6.3)T (1.08; 0.11, 0.16)T

Table 7: Estimate the parameters of the linear regression model for the data in Table
6 at different decision levels and predict the response variable with X1 = (28; 2.8, 4.2)T
and X2 = (2; 0.2, 0.3)T .

α β ĈNew = (C0, C1, C2)New Ĉorg = (C0, C1, C2)org
ˆ̃Y = (ŷ, l̂, r̂)

1 0.2 0.8 (0.2371, 0.1849, 0.8910) (5.7843, 0.0921, 6.1764) (20.7149, 1.4931, 2.2396)
2 0.8 0.2 (0.7874,−0.3223, 0.4140)(19.2124,−0.1606, 2.8701) (20.4584, 0.1246, 0.1869)
3 0.5 0.5 (0.4404,−0.0025, 0.7156)(10.7457,−0.0012, 4.9608) (20.6325, 0.9887, 1.4830)
4 0.4 0.8 (0.2770, 0.1482, 0.8570) (6.7585, 0.07382, 5.9406) (20.7067, 1.3948, 2.0922)
5 0.6 0.6 (0.4132, 0.02271, 0.7394) (10.0824, 0.01131, 5.1256) (20.6503, 1.05679, 1.5852)
6 0.3 0.4 (0.3489, 0.0821, 0.7952) (8.5145, 0.0409, 5.5123) (20.6836, 1.2169, 1.8254)
7 0 1 (0.1630, 0.2527, 0.9535) (3.9775, 0.1258, 6.6098) (20.7200, 1.6742, 2.5114)
8 0.990.01 (0.9089,−0.432, 0.3109) (22.1776,−0.215, 2.1550) (20.4616,−0.172,−0.257)
9 0.4 0.3 (0.4210, 0.01568, 0.7329) (10.2720, 0.0078, 5.0804) (20.6514, 1.0379, 1.5569)

row), the estimation of linear regression parameters is equal to c0 = 6.7585, c1 =
0.07382, c2 = 5.9406. Also, the response variable in these levels is estimated as
(20.7067, 1.3948, 2.0922) intuitive fuzzy number for X1 = (28; 2.8, 4.2)T and X2 =
(2; 0.2, 0.3)T . You can see the difference between the observed values and the fitted
values in this level in Figure 9 on the left.
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Table 8: Ỹ and ˆ̃Y distance values for different α and β in Example 4.3.
α β

∑24
i=1 d

2
α,β(Ỹ , ˆ̃Y ) MSE

1 0.2 0.8 48.2016 2.0084
2 0.8 0.2 0.8228 0.0343
3 0.5 0.5 12.6027 0.5251
4 0.4 0.8 34.9224 1.4551
5 0.6 0.6 14.0269 0.5844
6 0.3 0.4 20.0345 0.8348
7 0 1 89.9194 3.7466
8 0.99 0.01 0.0044 0.00018
9 0.4 0.3 12.164 0.5068

Figure 6: Membership functions of ỹ and ˜̂y , α = 0.5, β = 0.5 in Example 4.3

5 Conclusion
Usually, in many statistical analyses where we are faced with real data sets, accurate
measurement is not possible and the data is ambiguous. One of the most useful and
widely used statistical analyses in finding a relationship between two or more variables
based on a sample of observations from the community is linear or non-linear regres-
sion analysis. Now, if the observed samples of the variables are imprecise or there are
ambiguities in the relationships between them (model coefficients), then fuzzy regres-
sion can be used. In this article, the problem of linear regression in the intuitive fuzzy
space and providing a new parametric distance measure was investigated. One of the
outstanding features of this model was that the decision maker could determine the
parameters of the model at different levels of decision-making by choosing appropriate
cuts. In this way, different decision makers can estimate the parameters of the model
according to their desired level of decision making. At the end, by solving a practical
example, the ability and accuracy of the presented model are shown.
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Figure 7: Membership functions of ỹ and ˜̂y , α = 0, β = 1 (left) and α = 0.99, β = 0.01 (right) in
Example 4.3.

Figure 8: Membership functions of ỹ and ˜̂y , α = 0.2, β = 0.8 (left) and α = 0.8, β = 0.2 (right) in
Example 4.3.

Figure 9: Membership functions of ỹ and ˜̂y , α = 0.4, β = 0.8 (left) and α = 0.4, β = 0.3 (right) in
Example 4.3.
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