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Abstract: In this paper, we develop a version of the weighted Marshall-Olkin bivariate
exponential model by incorporating a new parameter. This parameter describes the
dependence structure between margins via a copula function. We choose the inference
for margins method to estimate the model parameters along with the copula param-
eter, as this method offers more advantages than the maximum likelihood estimation
method. Additionally, we conduct a comprehensive simulation study to investigate the
behavior of the copula parameter estimator and the remaining parameters. Finally,
an analysis of a real dataset on automobile insurance reveals that the Clayton copula
characterizes the dependence structure within the Archimedean copula family.
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1 Introduction
Often, researchers find that the existing families of distributions are insufficient to
meet the diverse requirements encountered in their work. The exponential distribu-
tion is notable example in this context. Widely used in life-testing experiments due
to its simplicity and lack of memoryless properties, Riad et al. (2022), the exponential
distribution does have a limitation: it features a constant hazard rate function. Con-
sequently, it cannot be effectively employed to model data with nonconstant hazard
rates. This limitation prompted scholars to explore extensions of this distribution. A
significant contribution in this direction comes from Gupta and Kundu (2009) who
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proposed a novel version of the exponential distribution by introducing the shape pa-
rameter α > 0. This asymmetrical distribution is termed the ”weighted exponential
(WE) distribution”. Due to its well-defined cumulative distribution function (CDF), it
can be efficiently employed for the analysis of financial and lifetime data. The proba-
bility distribution function (PDF) of two-parameter WE distribution with parameters
α > 0 and λ > 0 is as follows:

fX(x;α, λ) =
α+ 1

α
λe−λx(1− e−αλx), x > 0.

Additionally, the CDF of the WE distribution is expressed as:

FX(x;α, λ) = 1 +
1

α
e−λ(α+1)x − α+ 1

α
e−λx, x > 0.

During recent years, multivariate and mixed forms with other distributions have been
of great interest for WE distribution. Gupta and Kundu (2009) and Shahbaz et al.
(2010) suggested the three-parameter weighted Weibull (WW) model which are com-
mon generalization of the WE distribution. Mahdavi et al. (2017) introduced a bivariate
weighted exponential distribution based on the generalized exponential distribution.
Iqbal and Iqbal (2020) investigated a finite mixture model based on weighted versions
of exponential and gamma distributions. Additionally, they explored two real life data
applications with this model. Tapan (2022) proposed a new discrete weighted expo-
nential distribution using a special discrete method, and applied the new distribution
applied to two real data sets.

In reliability and survival analysis, Marshall and Olkin (1997) proposed a mathe-
matical transformation aimed to expand a family of exponential and Weibull distribu-
tions. This transformation facilitates the application of standard probability distribu-
tions, including exponential, gamma, and Weibull distributions, as well as statistical
methods, thereby simplifying complex analyses. The resulting family is termed the
Marshall-Olkin (MO) family of distributions. This renders it a valuable tool in fields
such as insurance risk modeling, survival analysis and lifetime data, Rubio and Steel
(2012).

A new class of WE distribution using the MO trasformation, namely weighted
Marshall-Olkin bivariate exponential (WMOBE) is introduced by Jamalizadeh and
Kundu (2013). They introduced WMOBE distribution, using a method that was
analogous to that of Azzalini (1985). The singular WMOBE distribution has four
parameters and can also be achieved as a hidden truncation model analogous to that
of Arnold and Beaver (2000). Arnold et al. (2002) carried out the interpretation of
any multivariate hidden truncation model, and so it also was reliable for the sug-
gested model (WMOBE). That’s why it was a fundamental stimulant of their proposed
model. Besides, Kotz et al. (2019) pointed out that the most popular singular bivari-
ate distribution is the three-parameter Marshall-Olkin bivariate exponential (MOBE)
distribution or the four-parameter Marshall-Olkin bivariate Weibull (MOBW) distri-
bution. Because it has been found that the WE distribution may prepare a better fit
than the Weibull or exponential in some instances (see Gupta and Kundu (2009)), it
is expected that the WMOBE model may also provide a better fit than the MOBE
or MOBW model in some instances. Of course, this expectation has been satisfied
by Jamalizadeh and Kundu (2013). Moreover, Khan and Kumar (2016) obtained the
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distribution of concomitant order statistics from the WMOBE distribution. Recent
work by Al-Mutairi et al. (2018) focused on various properties of the WW distribution
proposed by Shahbaz et al. (2010), extending it to the bivariate and multivariate ver-
sions, termed the bivariate weighted Weibull (BWW) distribution and the multivariate
weighted Weibull (MWW) distribution.

In parametric models, the most natural frequentist’s estimator is typically obtained
through the maximum likelihood (ML) method. Kazemi et al. (2021) introduced a new
form of WE distribution with four parameters and subsequently derived ML estimates
for these parameters, demonstrating its practical application. Building on this, Fallah
and Kazemi (2022) addressed a natural generalization of the WE distribution, focusing
on inferential aspects such as ML estimators and confidence intervals for the param-
eters. Riad et al. (2022) studied WE distribution, exploring mathematical features
and employing nine classical and approximating Bayesian approaches for estimating
the model’s parameters. However, in high-dimensional parameter spaces, maximum
likelihood imposes a high computational burden. The solution lies in using the infer-
ence for margins (IFM) method. This approach can significantly reduce computational
complexity, thereby making it feasible to analyze large datasets or models with many
parameters.

One of the most critical issues concerning multivariate distributions involves mod-
eling the dependence structure, particularly in financial and economic applications.
While it is commonly assumed that the marginals in multivariate distributions are
independent, this assumption does not always hold true. Copula functions, a fun-
damental tool in statistics, are employed to describe the dependence between two or
more random variables. These are famous for their simplicity and flexibility in captur-
ing dependence, accommodating arbitrary linear and nonlinear relationships between
variables. Over the last two decades, there has been a growing trend among researchers
to use copula function for modeling the dependence structure in multivariate distri-
butions. This modeling approach involves coupling the joint distribution functions
of random variables with their marginals. The main difference between copula and
non-copula models lies in how they model the dependence structure between variables:
copula models offer more flexibility by separating the marginal distributions from the
dependence structure, while non-copula models often make more restrictive assump-
tions about the joint distribution of variables. Also, the non-copula models can not
capture complex dependencies as effectively as copula models.

In this paper, our objective is to investigate the WMOBE distribution while mod-
eling the dependence structure using the archimedean copula. There is a deficiency
regarding the use of the copula function for modeling dependency in the WMOBE
model. Subsequently, we estimate the model parameters using the IFM method and
evaluate the efficiency of this approach through a simulation study. Finally, we apply
the proposed model to a real dataset.

The paper’s structure is organized as follows. In Section 2, a brief review of the
WMOBE model is provided. Section 3 is devoted to the exploration of copula functions.
The estimation of copula models is carried out in Section 4. Section 5 assesses the
performance of the proposed estimation method through an extensive simulation study.
The application of the proposed model to a real dataset is illustrated in Section 6.
Finally, the paper concludes in Section 7, summarizing key findings and contributions.
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2 A review on WMOBE model
This section defines and characterizes the WMOBE model perfectly. The random
vector (X1, X2) follows the WMOBE distribution if the joint PDF of (X1, X2) is as
follows (Jamalizadeh and Kundu, 2013):

g(x1, x2) =


g1(x1, x2), if x2 > x1 > 0,

g2(x1, x2), if x1 > x2 > 0,

g0(x), if x1 = x2 = x > 0.

(1)

in which

g1(x1, x2) =
α+ λ

α
λ1 exp(−λ1x1)(λ2 + λ12) exp(−(λ2 + λ12)x2)(1− exp(−x1α)),

g2(x1, x2) =
α+ λ

α
(λ1 + λ12) exp(−(λ1 + λ12)x1)λ2 exp(−(λ2x2)(1− exp(−x2α)),

g0(x) =
α+ λ

α
λ12 exp(−λx)(1− exp(−xα)),

where λ = λ1+λ2+λ12, and Θ = (α, λ1, λ2, λ12) is the parameter vector of the model.
α is the shape parameter and λ1, λ2, λ12 are the scale parameters. From now on, a
WMOBE distribution with PDF (1) will be denoted by WMOBE(α, λ1, λ2, λ12).
Theorem 2.1 (Jamalizadeh and Kundu (2013)). Let (X1, X2) ∼ WMOBE(α, λ1, λ2, λ12),
then
1. X1 ∼ WE(a1, b1), which a1 = (α+ λ2)/(λ1 + λ12) , b1 = λ1 + λ12

2. X2 ∼ WE(a2, b2), which a2 = (α+ λ1)/(λ2 + λ12) , b2 = λ2 + λ12.

3 Copula functions
Modeling dependence is crucial in multivariate statistics and research fields such as
actuarial sciences and finance. Copulas have become increasingly popular for this
purpose, Cherubini et al. (2004). Copulas are linking functions that connect multi-
variate distributions to their one-dimensional margins. Their popularities stems from
the flexibility and modeling possibilities they offer for dependence. Copulas were first
introduced by Sklar in 1959, but they have gained more prominence in the literature
since 1999, Genest et al. (2013). Sklar (1959) decomposes the joint distribution func-
tions of random variables into their marginals and dependence structure modeled by
the copula function C:

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

This decomposition is helpful for two reasons:
1- It enables the use of any univariate marginal distributions.
2- It allows the modeling of heavy tails and sophisticated dependencies.

For a bivariate, continuous random variable X with a distribution function F and
univariate continuous margins Fj ; j = 1, 2, the copula function C is a distribution
function C : [0, 1]2 −→ [0, 1] with U(0, 1) margins that satisfies

F (X1, X2) = C(F1(X1), F2(X2)).
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If the univariate margins are absolutely continuous with respective densities fj = F ′
j

and if C has mixed derivatives of order 2, the joint density function of the multivariate
distribution F is given by

f(X1, X2) = c(F1(X1), F2(X2))f1(X1)f2(X2), (2)

where
c(u1, u2) =

∂2

∂u1∂u2
C(u1, u2), u1, u2 ∈ [0, 1], (3)

denoting the copula density of C(., .), Joe and Xu (1996).

3.1 Archimedean copulas
Copulas are divided into numerous families. Having a large class of copulas at one’s
disposal is desirable for statistical modeling. The Archimedean copulas, found in the
literature with one or more real parameters, constitute an important and extensive
family of copulas. We utilize the Archimedean copula to model the dependence in
WMOBE distribution due to:
1. The ease with which they can be constructed,
2. The great family of copulas which belongs to this class,
3. The nice properties possessed by this family of copulas.

A bivariate, exchangeable Archimedean copula is defined as

C(u1, u2) = ϕ{ϕ−1(u1) + ϕ−1(u2)}, u1, u2 ∈ [0, 1],

where ϕ ∈ L , ϕ : [0,∞] → [0, 1] is called the generator of the copula and depends on
θ, Härdle and Okhrin (2010). L denotes the class of Laplace transforms consisting of
strictly decreasing, differentiable functions.

Archimedean copulas are widely used in applications because of their simple form,
covering a variety of dependence structures and the nice properties they possess. Ta-
ble (1) highlights the most important Archimedean copulas with their generators and
parameter space.

Table 1: Most important Archimedean copulas.
Copula Generator Bivariate copula Parameter
Clayton (1 + θs)−

1
θ [max{u−θ + v−θ − 1; 0}]− 1

θ θ ∈ [−1,∞)\{0}
Gumbel −(log(s))θ exp[−((− log(u))θ + ((− log(v))θ))

1
θ ] θ ∈ [1,∞)

Frank − log( exp(−θs)−1
exp(−θ)−1 ) − 1

θ log[1 +
(exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1 ] θ ∈ R\{0}

According to (3), the PDF of the Archimedean copulas can be easily calculated.
For example, in the case of the Clayton copula, the PDF is calculated as

c(u, v; θ) = (θ + 1)(uv)−(θ+1)(u−θ + v−θ − 1)−
1
θ−1, 0 ≤ u, v ≤ 1. (4)

The joint PDF of the WMOBE distribution can take different shapes. We have pre-
sented the contour plots of WMOBE distribution with Archimedean copulas for θ = 1
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Figure 1: Contour plots of the joint PDF of the WMOBE distribution for α = 0.5 ,λ1 = λ2 = 1 and
λ12 = 0.5 with Clayton copula (first row), Gumbel copula (second row) and Frank copula (third row)
for θ = 1, 3.
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and 3 in 1.This figure illustrates that the strength of dependence between the marginals
intensifies with increasing θ.

In Archimedean copulas, measures of association play a crucial role in quantifying
the strength of dependence between variables. Several measures of association are
commonly used in the context of Archimedean copulas. Two important measures of
association used more frequently are Spearman’s rho (ρ) and Kendall’s tau (τ). If X
and Y are continuous random variables with copula C, then

ρXY = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3,

τXY = 1− 4

∫ 1

0

∫ 1

0

∂C(u, v)

∂u

∂C(u, v)

∂v
dudv.

For Archimedean copulas, there is no simple expression for Spearman’s ρ in terms of
the generator ϕ, but for Kendall’s τ , we have

τXY = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt.

Table 2 represents the Kendalls τ for three Archimedean copulas Clayton, Frank and
Gumbel, Weber (2015).

Table 2: Kendalls τ as a function of the copula parameter.
Archimedean copula Kendallsτ

Clayton θ
θ+2

Frank 1 + 4
θ [D1(θ)− 1]∗

Gumbel θ−1
θ

∗Dk(x) = kx−k
∫ x

0
tk(et − 1)−1dt for k = 1, 2.

4 Estimation of copula models
Once the copula model has been selected, the next stage is to estimate the model. The
maximum likelihood-based methods are the most common calibration methods. To as-
sess the parameters of the copula model, we need to know the likelihood function. For
this, consider the 2-dimensional copula model (2) under absolute continuity assump-
tions and a random sample size n of (i.i.d) vectors xj = (x1j , x2j), j = 1, 2, . . . , n.
Suppose that the copula C belongs to a family of copulas indexed by a parameter
θ : C(u1, u2; θ). Also, let the marginal distribution functions Fi and its PDF fi are
indexed by (vector) parameters Λi : Fi(xi;Λi) and fi(xi;Λi), i = 1, 2, respectively.
The likelihood function of (2) is defined as

L(θ,Λ1,Λ2) =

n∏
j=1

f(x1j , x2j ; θ,Λ1,Λ2), (5)



On dependence of the weighted Marshall-Olkin 164

where

f(x1j , x2j ; θ,Λ1,Λ2) = c(F1(x1j ;Λ1), F2(x2j ;Λ2); θ)f1(x1j ;Λ1)f2(x2j ;Λ2). (6)

With replacing (6) in (5), it is clear that the likelihood function is decomposed to
likelihood contribution from dependence structure in data represented by the copula
c(., .; θ) and the likelihood contribution from margins, fi(xi;Λi), i = 1, 2.

For estimating the parameters of copula models, we need the log-likelihood function
of L, which can be written as below

ℓ(θ,Λ1,Λ2) =

n∑
j=1

log c(F1(x1j ;Λ1), F2(x2j ;Λ2); θ) +

2∑
i=1

n∑
j=1

log fi(xij ;Λi). (7)

Now, we can find the ML estimates of parameters by maximizing the ℓ, numerically.

Lemma 4.1. Let C is a bivariate Archimedean copula with parameter θ. Then for
WMOBE (2) with parameter vector (θ,Λ1,Λ2) which Λ1 = (a1, b1) and Λ2 = (a2, b2),
the log likelihood function can be written as below

ℓ (θ, a1, b1, a2, b2)=n log(
a1 + 1

a1
) + n log(b1)− b1

n∑
j=1

x1j +

n∑
j=1

log(1− e−a1b1x1j )

+n log(
a2 + 1

a2
) + n log(b2)− b2

n∑
j=1

x2j +

n∑
j=1

log(1− e−a2b2x2j )

+

n∑
j=1

log c(1 +
1

a1
e−b1(a1+1)x1j − a1 + 1

a1
e−b1x1j ,

+
1

a2
e−b2(a2+1)x2j − a2 + 1

a2
e−b2x2j ; θ). (8)

The initial values of the parameters of marginal distributions which the (8) to be
optimized over are calculated using the moment method as follows:

âi =
2Mi − 3 +

√
2Mi − 3

2−Mi
; b̂i =

âi + 2

(â1 + 1)x̄1
,

provided that 3
2 < Mi < 2 where Mi =

m2i

m2
1i

such that m1i and m2i are the first and
second order raw moments of xi = (xi1, xi2, . . . , xin); i = 1, 2. The initial value for the
copula parameter is calculated using the Kendall’s τ according to Table 2.

There are two likelihood-based methods to calibrate the model. The first one is full
maximum likelihood (FML) which estimates the model parameters simultaneously. In
this method, the estimates are consistent and asymptotically efficient. But in high
dimensions of vector parameters, it might be computationally demanding. To alleviate
this problem, Joe and Xu (1996) suggested an alternative to estimating parameters.
This method is two-stage as follows
1. In the latter part of (7), the log likelihood functions of margins are optimized to
estimate the parameters of the margins Λi i = 1, 2. The Λi’s are then replaced by
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referred estimates in (7).
2. In the second step, the likelihood function (7) is maximized over θ,

θ̂IFM = Arg max ℓ(θ; Λ̂i).

This method is referred to as Inference for Margins (IFM) and simplifies the compu-
tational burden of FML, Sakhaei and Nasiri (2020).

5 Simulation study
In this section, we assess the performance of the proposed estimation method utilizing
a simulation study for different sample sizes in WMOBE distribution. The study is
limited to the well-known Clayton copula for modeling dependence between margins.
But for Frank and Gumbel copulas, the same results are obtained.

We first simulate sample paths of a WMOBE distribution with the rejection sam-
pling method. The rejection sampling method is usually used to simulate unpopular
distributions. Suppose we want to simulate data from bivariate PDF f(x, y);x, y ∈ R.
In this method, we need a proposal PDF g(x, y) that covers the support of the f(x, y).

g(x, y) is easy to sample from and f(x,y)
g(x,y) ≤ c, where c ≥ 1 is a real number. The

step-by-step procedure for the rejection sampling method is as follows
1. let (x, y) be a random variable with PDF f(x, y) ∀x, y ∈ R,
2. let (x′, y′) be a simulated random variable with PDF g(x, y) ∀x, y ∈ R,
3. let f(x′,y′)

g(x′,y′) ≤ c ∀x′, y′ ∈ R, c ≥ 1 is a real number,
4. let 0 < R1 < 1 , 0 < R2 < 1 be two random numbers,
5. set x′ in terms of R1 and y′ in terms of R2 depending on the expression obtained
for the ratio f(x′,y′)

kg(x′,y′) ,
6. if R1R2 ≤ f(x′,y′)

kg(x′,y′) , then set (x, y) = (x′, y′) else reject the (x′, y′) and repeat the
process from (1).

Table 3 shows the results of the parameter’s estimation of WMOBE distribution
with IFM procedure with corresponding standard errors. It is observed that with
increasing n, the standard errors of estimates are reduced. Additionally, for each n,
the standard error of the θ̂ increases as θ increases. Figure 2 shows the boxplot of
marginal parameter estimates for sample sizes n = 100, 500, 1000. The true values of
the marginal parameters are a1 = 1, b1 = 1.5, a2 = 1 and b2 = 1.5 and are indicated
by horizontal lines. Since the copula parameter is estimated separately in the second
step of the IFM method, its boxplot is shown in Figure 3 for different sample sizes.
The number of replicates in all simulations is equal to 20. It is observed that the IFM
estimation procedure slightly overestimates or underestimates the copula parameter
for small sample sizes. Therefore, increasing the sample sizes shows better effects. In
addition, the copula parameter estimates are more accurate for large sample sizes than
small ones.



On dependence of the weighted Marshall-Olkin 166

n=100 n=500 n=1000

0.5

1.0

1.5

2.0

The boxplot for a_1 estimates

sample size

v
a

lu
e

s

n=100 n=500 n=1000

1.2
1.3
1.4
1.5
1.6
1.7
1.8

The boxplot for b_1 estimates

sample size

v
a

lu
e

s

n=100 n=500 n=1000

0.5

1.0

1.5

2.0

2.5

3.0

The boxplot for a_2 estimates

sample size

v
a

lu
e

s

n=100 n=500 n=1000
1.2
1.3
1.4
1.5
1.6
1.7
1.8

The boxplot for b_2 estimates

sample size

v
a

lu
e

s

Figure 2: The boxplot of marginal parameter estimations with true values a1 = 1 (top
left), b1 = 1.5 (top right), a2 = 1 (below left) and b2 = 1.5 (below right) for simulated
data with sample sizes n = 200, 500, 1000.
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Figure 3: The boxplot of Clayton copula parameter estimate (θ̂) for simulated data
with different values of n and θ = 3.
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Table 3: IFM estimates of parameter values and the corresponding root mean squared errors.
n True values IFM estimates

a1 b1 a2 b2 θ â1 b̂1 â2 b̂2 θ̂
100 1 1.5 1 1.5 3 0.4885(2.0278) 1.8234(1.0094) 2.1647(1.9559) 1.4862(0.2611) 3.4525(0.3936)

1 2 1 2 3 3.4346(2.0987) 1.8646(0.2424) 3.6974(1.9638) 1.6810(0.2043) 3.4177(0.3954)
1.25 2 1.25 2 5 1.3046(1.6685) 1.9694(0.4668) 1.7053(1.6400) 1.8421(0.3462) 4.9765(0.5245)

1 2.5 1 2.5 5 0.6666(1.2529) 2.6478(0.7795) 2.3155(1.3429) 1.9822(0.2640) 5.5563(0.5679)
200 1 1.5 1 1.5 3 1.8395(1.0610) 1.3630(0.1601) 0.3198(1.0986) 1.7776(0.6456) 3.5557(0.2841)

1 2 1 2 3 1.8995(1.2838) 1.7978(0.2360) 3.6059(1.7118) 1.6227(0.1546) 2.9171(0.2472)
1.25 2 1.25 2 5 0.8712(0.7812) 2.2798(0.3600) 1.3692(0.8017) 2.1185(0.2525) 5.1092(0.3806)

1 2.5 1 2.5 5 1.4304(0.9537) 2.2461(0.2949) 1.2709(0.9457) 2.2820(0.3249) 6.0229(0.4296)
400 1 1.5 1 1.5 3 1.3366(0.5919) 1.4479(0.1280) 0.7647(0.7354) 1.5853(0.2485) 2.9213(0.1757)

1 2 1 2 3 1.1619(0.6671) 1.9818(0.2127) 0.6487(0.7368) 2.2286(0.3877) 2.8729(0.1755)
1.25 2 1.25 2 5 1.4212(0.6884) 1.9266(0.1826) 1.5172(0.7600) 1.9156(0.1864) 5.2558(0.2713)

1 2.5 1 2.5 5 0.5567(0.6365) 2.6613(0.4398) 0.3498(0.6963) 2.8764(0.6418) 4.8652(0.2568)
600 1 1.5 1 1.5 3 0.6273(0.5245) 1.6780(0.2138) 1.3600(0.5673) 1.4165(0.1141) 2.9889(0.1464)

1 2 1 2 3 0.5575(0.6052) 2.1123(0.3288) 0.7573(0.5628) 2.0144(0.2444) 2.8204(0.1406)
1.25 2 1.25 2 5 1.4048(0.5100) 1.9166(0.1390) 1.0586(0.5681) 2.0275(0.1971) 5.0766(0.2167)

1 2.5 1 2.5 5 0.9143(0.4329) 2.4325(0.2078) 0.5251(0.4475) 2.6892(0.3254) 5.0132(0.2142)
1000 1 1.5 1 1.5 3 1.4202(0.4476) 1.4455(0.0886) 1.9510(0.4888) 1.3340(0.0684) 3.0580(0.1150)

1 2 1 2 3 1.2937(0.4307) 1.9270(0.1229) 0.6079(0.5079) 2.1880(0.1713) 3.1076(0.1155)
1.25 2 1.25 2 5 1.1368(0.4518) 2.0339(0.1486) 1.4267(0.4045) 1.9194(0.1085) 4.9668(0.1639)

1 2.5 1 2.5 5 0.5721(0.4528) 2.5432(0.2926) 0.2480(0.5658) 2.8048(0.5698) 4.4490(0.1502)
2000 1 1.5 1 1.5 3 1.0447(0.2987) 1.4613(0.0759) 1.1786(0.2832) 1.4403(0.0656) 3.0397(0.0810)

1 2 1 2 3 1.4238(0.3449) 1.8921(0.0876) 1.5105(0.3136) 1.8889(0.0775) 3.0043(0.0797)
1.25 2 1.25 2 5 0.7725(0.2556) 2.1839(0.1211) 1.0903(0.2769) 1.9956(0.0943) 4.8942(0.1155)

1 2.5 1 2.5 5 0.6900(0.2799) 2.5446(0.1640) 0.9039(0.2757) 2.4263(0.1299) 4.7621(0.1122)
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6 Real data analysis
In this section, our objective is to apply the proposed model to real data. For this,
we focus on studying automobile insurance data. There is little evidence of study-
ing automobile insurance data that are naturally asymmetric in practice due to large
claims. The data is collected from the ASIA Insurance (an IRANIAN insurance com-
pany) monthly reports to analyze the risk premium from 2018 to 2020, comprising 623
observations. The data consists of the number of people killed or injured in accidents
(PK/I) and the number of claims in Third-Party contracts filed (TPC). We used the
log return of the data. A summary statistics of the data is given in Table 4. Sample
Kurtosis of 7.7840 and 4.7623 for PK/I and TPC, respectively, suggest a weighted
exponential distribution for both margins.

Table 4: Summary Statistics of PK/I and TPC Variables.
Variables Mean Variance Skewness Kurtosis Minimum Maximum

PK/I 0.5769 0.1987 1.7813 7.7840 0.0062 3.0083
TPC 0.6159 0.1935 1.2241 4.7623 0.0046 2.6710

We can find the maximum likelihood estimation (MLE) parameter of marginal
distributions by maximizing the first and second line of (8) numerically. So, the fitted
weighted exponential distributions are as follows

fX(x) =
1.4216 + 1

1.4216
2.4494e−2.4494x(1− e−(1.4216)(2.4494)x), x > 0,

fY (y) =
0.4026 + 1

0.4026
2.7812e−2.7812y(1− e−(0.4026)(2.7812)y), y > 0,

The Q-Q plot of PK/I and TPC variables are depicted in Figure 4. The x-axis rep-
resents the quantiles of the theoretical distribution, while the y-axis represents the
quantiles of the observed data. As observed, there are no departures from the ex-
pected distributions, providing insights into the nature of the data’s distributional
characteristics.

In order to assessing the goodness of fit of a statistical model to a set of data, the
Cramér-von Mises criteria is used. It measures the discrepancy between the empirical
distribution function of the observed data and the theoretical distribution function
proposed by the model. The formula for the Cramér-von Mises statistic is

W 2 =

∫ ∞

−∞
[Fn(x)− F (x)]2 dF (x),

where W 2 is the Cramér-von Mises statistic, Fn(x) is the empirical cumulative distri-
bution function of the observed data and F (x) is the cumulative distribution function
of the theoretical distribution being tested. More Specifically, W 2 = 0.6973(Sig =
0.3547) and W 2 = 0.7342(Sig = 0.2071) indicates that there is no significant discrep-
ancy between the observed data and the theoretical distribution WMOBE for PK/I
and TPC, respectively.

Figure 5 shows the plot of empirical cumulative distribution function(ECDF) and
the theoretical cumulative distribution function (TCDF) for two studying variables.
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Figure 4: Q-Q plot of PK/I (left) and TPC (right) variables for real data.

The proximity of these two functions implies that the weighted exponential distribution
is a good proposal for the distribution of the studying variables.
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Figure 5: ECDF (empirical CDF) and TCDF (theoretical CDF) of PK/I(left) and
TPC(right) variables.

Figure 6 shows the scatterplot of PK/I values versus TPC values. From this Figure,
it appears that there exists a strong level of dependence between variables which is
supported by the associated Kendall’s τ = 0.6126(sig=2.2e − 16). The closer this
coefficient is to 1, it tells us that the variables are dependent on each other.

For model selection among a set of candidate models, the AIC (Akaike information
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Figure 6: Scatter plot of PK/I vs TPC data.

criterion) and BIC (Bayesian information criterion) are used. Both of them balance
the trade-off between goodness of fit and model complexity. The model with the
lowest AIC and BIC value is preferred, indicating that it provides the best candidate.
Table 5 represents the results of using the above diagnostic criteria along with copula
parameter estimates corresponding to the Archimedean bivariate copula family and
the model with no copula which is considered by Jamalizadeh and Kundu (2013). The
WMOBE model with Clayton copula represents the best fit for the pair of variables
that were being tested.

Table 5: The comparison of WMOBE model between Archimeadn copula and non-
copula model.

Model θ̂ AIC BIC log likelihood
Clayton Copula 3.0187 -842.3132 -837.8786 422.1566
Frank Copula 8.1263 -622.2713 -617.8368 312.1357

Gumbel Copula 2.1031 -484.7729 -480.3383 243.3864
Non-copula - -158.04212 -140.6830 83.2106

7 Conclusion
This paper used the copula approach to characterize the dependence structure between
margins in weighted Marshall-Olkin bivariate exponential distribution. Through a
simulation study, the behavior of copula parameter estimates is investigated using the
IFM method. It is observed that the IFM method tends to overestimate the copula
parameter for small sample sizes. However, as the sample size increases, the standard
errors of the estimates decrease. Furthermore, keeping n constant, an increasing in θ
leads to a reduction in the dispersion of the copula parameter estimate.
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The model’s parameters were estimated by applying them to real insurance data.
A comparison between the theoretical CDF and the empirical CDF of the data indi-
cates that the marginal distributions of the desired model align well with the weighted
exponential distribution. Diagnostic criteria results reveal that the Clayton copula in
Archimedean copula families is suitable for describing the dependence structure.
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