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Abstract: Often, reliability systems suffer shocks from external stress factors, stress-
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the reliability of the system. In this paper, we provide sufficient and necessary con-
ditions on components’ lifetimes and their survival probabilities from random shocks
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to illustrate the established results.
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1 Introduction
One of the most commonly used systems in reliability is an r-out-of-n system. This
system, comprising n components, works iff at least r components work, and it includes
parallel, fail-safe and series systems all as special cases corresponding to r = 1, r = n−1
and r = n, respectively. Let X1, . . . , Xn denote the lifetimes of components of a
system and X1:n ≤ . . . ≤ Xn:n be the corresponding order statistics. Then, Xn−r+1:n

corresponds to the lifetime of a r-out-of-n system. Due to this direct connection, the
theory of order statistics becomes important in studying (n−r+1)-out-of-n systems and
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in characterizing their properties. For comprehensive discussions on the study of order
statistics and their applications, one may refer to Balakrishnan and Rao (1998a,b).

The comparison of important characteristics associated with lifetimes of technical
systems is an interesting topic in reliability theory, since it usually enables us to ap-
proximate complex systems with simpler ones and subsequently enable us to obtain
various bounds for important ageing characteristics of the complex system. A tool
that is useful for this purpose is the theory of stochastic orderings.

Let X1, . . . , Xn be non-negative independent random variables corresponding to the
lifetimes components of a system. Let Ip1 , . . . , Ipn , independent Xi’s, be independent
Bernoulli random variables such that E[Ipi ] = pi, i = 1, . . . , n, with Ipi = 1 if com-
ponent i survives from the random shock, otherwise Ipi = 0 if component i fails due
to the shock, for i = 1, . . . , n. For a given time period, we can use Ip1X1, . . . , IpnXn

to denote the components’ lifetimes subject to random shocks. Of special interest are
Yn:n = max(Ip1X1, . . . , IpnXn) and Y1:n = min(Ip1X1, . . . , IpnXn) corresponding to
the lifetime of parallel and series systems, respectively. Throughout, the term “hetero-
geneity” among components indicates diversity among them, which is then compared by
majorization order imposed on the distribution parameters with corresponding systems
with homogeneous components with similar assumptions being made on the survival
probabilities. It is of course interesting to look into the influence of heterogeneity
among the components and the random shocks on the lifetimes of parallel and series
systems.

We can also present an alternative version of the problem stated above as follows.
Consider systems with a finite number of components, each of which is equipped with
a starter whose performance is modelled by a Bernoulli random variable, with all
component lifetimes being independent. Since each starter may fail to initiate the
component, the total number of components in operation will be a random number.
Such situations arise in some practical applications. For example, the reliability and
availability of power plants typically begins with the gas turbine start-up procedure,
the time length of an on-line conference is the maximum on-line time of those who
successfully registered for the conference, and the largest loss of an insured with a
policy covering multiple risks is the maxima of those invoked losses only. Another
scenario in auction theory is as follows: an auctioneer usually attracts some potential
bidders through advertising a precious object, and in this case the largest bid of those
participants defines the the price of the object for sale; see Li (2005); Fang and Li
(2015); Li and Li (2019).

In actuarial science, Xi’s may represent claim sizes of risks covered by one policy and
Ipi ’s indicate the occurrence of these claims. Then, Yn:n = max(Ip1X1, . . . , IpnXn) and
Y1:n = min(Ip1X1, . . . , IpnXn) correspond to the largest and smallest claim amounts
in a portfolio of risks, respectively.

Fail-safe systems are commonly used in many day-to-day applied structures, because
of its fault tolerance or failure-survivability design. A fail-safe is a special design feature
that, when a failure occurs, will respond in such a way that no harm happens to the
system itself. The brake system in a train is a good example of a fail-safe system in
which the brakes are held in off-position by air pressure and if a brake line splits or a
carriage becomes separated, the air pressure will be lost and in that case the brakes will
get applied by a local air reservoir. Yet another classic example of a fail-safe system is
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an elevator in which brakes are held off brake pads by tension and if the tension gets
lost, the brakes latch on the rails in shaft thus preventing the elevator from falling off.
There are many other such fail-safe systems in common use.

Balakrishnan et al. (2015) established necessary and sufficient conditions for com-
paring two fail-safe systems with independent homogeneous exponential components, in
the sense of mean residual life, dispersive, hazard rate and likelihood ratio orders. Their
results specifically showed how an (n− 1)-out-of-n system consisting of heterogeneous
components with exponential lifetimes can be compared with any (m − 1)-out-of-m
system consisting of homogeneous components with exponential lifetimes. In a similar
vein, Zhang et al. (2019) presented sufficient (and necessary) conditions on lifetimes
of components and their survival probabilities from random shocks for comparing the
lifetimes of two fail-safe systems in terms of usual stochastic, hazard rate and likelihood
ratio orders.

Cai et al. (2017) compared the hazard rate order of second order statistics arising
from two sets of independent multiple-outlier proportional hazard rates (PHR) sam-
ples. They then established the submajorization order between the sample size vectors
together with the supermajorization order between the hazard rate vectors imply the
hazard rate ordering between the corresponding second-order statistics from multiple-
outlier PHR random variables.

Zhang et al. (2019) have discussed the usual stochastic, hazard rate, and likelihood
ratio orderings between two fail-safe systems comprising independent components sub-
ject to independent random shocks. These results can be also applied to analyze the
effects of heterogeneity among pricing distribution and attending probabilities on the
actual cost of the auctioneer in the context of second-price reverse auction.

Barmalzan et al. (2022) established stochastic comparisons of two fail-safe systems
with dependent components having an Archimedean copula for the joint survival func-
tion and general exponentiated location-scale lifetime distributions. Recently, Hazra
et al. (2022) obtained some comparisons results for the second smallest and the second
largest order statistics from a general semiparametric family of distributions using dif-
ferent stochastic orders, namely, the usual stochastic order, the hazard rate order and
the reversed hazard rate order.

Most of the existing literature on stochastic comparisons of fail-safe systems have
focused on the case when the components in the systems are all independent. How-
ever, when such technical systems are in operation, many important factors, such as
operating conditions, environmental conditions and stress factors, are shared and ex-
perienced by all the components in the system. It would, therefore, be reasonable for
the lifetimes of components in a system to be dependent. Of course, there are many
ways to model this dependence (Kotz et al., 2000), and the theory of copulas is one
useful tool for this purpose; see, for example, Nelsen (2006) for a book length account
of copulas. Though many copulas have been developed in the literature, Archimedean
copulas have been studied extensively by many researchers due to their flexibility and
also due to the fact that they include the well-known Clayton copula, Ali-Mikhail-Haq
copula, and Gumbel-Hougaard copula all as special cases. Moreover, they also include
the independence copula as a special case and consequently comparison results estab-
lished under Archimedean copulas for the joint distribution of lifetimes of components
in the system are quite general and would naturally include the corresponding results
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for the case of independent components.
In the present work, from a reliability viewpoint, we consider the lifetimes of fail-safe

systems (i.e., the second order statistics) in a general scenario when (i) the component
lifetimes are independent and (ii) the component lifetimes are dependent with their
joint survival function represented by an Archimedean copula and having distribution-
free lifetimes.

Now, let us give a reliability explanation of the our established results. Consider a
factory that produces some specific units with fail-safe structures made up n compo-
nents. Suppose the components used in building the units suffer shocks from external
stress factors and also come from a supplier, say Supplier I. Supplier I asserts the life-
times of its produced components follow the arbitrary model with possibly different
parameters. For some reasons such as high price or unavailability of the components
in a specific period of time, the factory decides to purchase its required components
from a new supplier, say Supplier II. In the produced components by Supplier II, sup-
pose the components used in building the units also suffer shocks from external stress
factors and their lifetimes follow the another arbitrary models with possibly different
parameters. In such a case, changing the components may impress the quality of the
units of the factory. Therefore, to avoid the quality loss of the units, the factory must
investigate the effect of these changes. In this situation, our results give some sufficient
conditions to compare the survival functions of the units comprising the components
of Suppliers I and II.

Another possible interpretation of our results established here in the area of auction
theory can be stated as follows: In second-price reverse auction, bidders (sellers) submit
sealed bids to the auctioneer (buyer) who solicits the purchase of items when the auction
begins. The lowest bidder wins the bid and will be paid the amount of the second lowest
price from the auctioneer. This type of auction is often used by large corporations and
government departments to purchase supplies and services. The cost of the auctioneer
can be expressed as X2:n if there are n bidders submitting prices X1, . . . , Xn. It may
happen that some of the bidders drop out of the auction before the beginning due to
some unforeseen circumstances. As a result, the final cost on the auction turns out to
be the second-order statistics arising from Ip1X1, . . . , IpnXn where Ipi denotes whether
bidder i attends the auction or not. Therefore, all the results in this paper can be used
to explain the effects of the heterogeneity among the price distribution and attending
probabilities on the actual cost of the auctioneer.

The rest of this paper is organized as follows. In Section 2, we introduce some
definitions and notation pertinent to stochastic orders, vector majorization and related
orders and also Archimedean copulas. Section 3 discusses stochastic comparisons of
fail-safe systems under random shocks, with independent heterogeneous components,
by using the concept of vector majorization between vectors of parameters. In Section 4,
we establish some results on fail-safe systems under random shocks, when components
are dependent. Finally, some concluding remarks are made in Section 5.

2 Preliminaries
We present here some basic definitions and lemmas that are used subsequently in
establishing the main results. Throughout this paper, we denote R+ = (0,+∞). In
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addition, we use a sgn= b to denote that both sides of an equality have the same sign.

Definition 2.1. Suppose X and Y are two non-negative continuous random variables
with distribution functions FX and FY , survival functions F̄X and F̄Y , respectively.
We assume that all expectations exist wherever they are given. Then, X is said to be
larger than Y in the usual stochastic order (denoted by X ≥st Y ) if F̄X(t) ≥ F̄Y (t) for
all t ∈ R+, which is equivalent to saying that E(ϕ(X)) ≥ E(ϕ(Y )) for all increasing
functions ϕ : R+ → R.

Interested readers may refer to Müller and Stoyan (2002) and Shaked and Shan-
thikumar (2007) for comprehensive discussions on various stochastic orderings and
inter-relationships between them.

Definition 2.2. Consider two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) with
corresponding increasing arrangements a1:n ≤ . . . ≤ an:n and b1:n ≤ . . . ≤ bn:n. Then,
(i) a is said to majorize b, denoted by a

m
� b, if

∑i
j=1 aj:n ≤

∑i
j=1 bj:n, for i =

1, . . . , n− 1, and
∑n
j=1 aj:n =

∑n
j=1 bj:n;

(ii) a is said to weakly supermajorize b, denoted by a
w
� b, if

∑i
j=1 aj:n ≤

∑i
j=1 bj:n,

for i = 1, . . . , n.

The concept of majorization is a way of comparing two vectors of same dimension,
in terms of dispersion of their components for which the order u

m
� v means that ui’s

are more dispersed than vi’s, for a fixed sum. For example, we always have u
m
� ū,

where ū = (ū, . . . , ū) with ū = n−1
∑n
i=1 ui. It is evident that the majorization order

implies both weak supermajorization and weak submajorization orders.

Definition 2.3. We say that a real-valued function ϕ, defined on a set A ⊆ Rn, is
Schur-convex on A if

u
m
� v ⇒ ϕ(u) ≥ ϕ(v) for any u,v ∈ A.

ϕ is said to be Schur-concave function on A if −ϕ is Schur-convex on A.

Lemma 2.4. (Marshall et al. (2011), p. 84) Suppose I ⊂ R is an open interval and
Ψ : In → R is continuously differentiable. Then, ψ is Schur-convex (Schur-concave)
on In if and only if
(i) Ψ is symmetric on In,
(ii) for all i 6= j and all z ∈ In,

(zi − zj)

(
∂Ψ

∂zi
(z)− ∂Ψ

∂zj
(z)

)
≥ 0(≤ 0),

where ∂Ψ
∂zi

(z) denotes the partial derivative of Ψ with respect to its i-th argument.

Lemma 2.5. (Marshall et al. (2011), p. 87) Consider the real-valued function ϕ,

defined on a set A ⊆ Rn. Then, u
w
� v implies ϕ(u) ≥ ϕ(v) if and only if ϕ is

decreasing and Schur-convex on A.
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Archimedean copulas have been widely used in reliability theory and actuarial sci-
ence due to its mathematical tractability as well as its capability of capture wide ranges
of dependence. For a decreasing and continuous function ψ : [0,∞) −→ [0, 1] such that
ψ(0) = 1 and ψ(+∞) = 0 and ϕ = ψ−1 being the inverse,

Cψ(u1, . . . , un) = ψ(ϕ(u1) + . . .+ ϕ(un)) for all ui ∈ [0, 1], i = 1, . . . , n,

is called an Archimedean copula with generator ψ if (−1)kψ[k](x) ≥ 0 for k = 0, . . . , n−
2 and (−1)n−2ψ[n−2](x) is decreasing and convex. The Archimedean copula family
includes many knows copulas, including the well-known independence (product) cop-
ula, Clayton copula, Ali-Mikhail-Haq (AMH) copula, Hougaard copula and Gumbel-
Hougaard copula. For more discussions on copulas and their properties, one may refer
to Nelsen (2006) and McNeil and Neslehova (2009).

3 Stochastic comparisons with independent compo-
nents

This section, using the concepts of vector majorization, weakly supermajorization and
related orders, presents stochastic comparisons of fail-safe systems in the sense of usual
stochastic order when distribution-free components are independent.

Zhang et al. (2019) discussed stochastic comparison of fail-safe systems comprising
independent components subject to independent random shocks and obtained results
under the following set:

En =
{
(a, b) =

(
a1 . . . an
b1 . . . bn

)
: ai, bj > 0 and (ai − aj)(bi − bj) ≥ 0, i, j = 1, . . . , n

}
.

In the throughout the paper, we consider the following sets

E+
n = {(x1, . . . , xn) : x1 ≥ x2 ≥ . . . ≥ xn > 0}

D+
n = {(x1, . . . , xn) : 0 < x1 ≤ x2 ≤ . . . ≤ xn}

In the following theorem, we suppose that underlying independent random variables
have two parameters.

Theorem 3.1. Suppose X1, . . . , Xn are independent nonnegative random variables
with Xi ∼ F̄ (·;αi, βi), where F̄ (·;αi, βi) denotes the survival function of Xi, and
αi > 0 and βi > 0 are the distribution parameter of Xi, for i = 1, 2, . . . , n. Let
Ip1 , . . . , Ipn(Ip∗1 , . . . , Ip∗n) be a set of independent Bernoulli random variables, inde-
pendent of Xi’s, with E[Ipi ] = pi(E[Ip∗i ] = p∗i ), i = 1, 2, . . . , n. Let Yi = IpiXi and
Y ∗
i = Ip∗iXi, i = 1, 2, . . . , n. Assume that the following conditions hold:

(i) g : [0, 1] 7−→ R+ is a differentiable and strictly decreasing function;
(ii) g−1(u) is log-convex in u ∈ R+;
(iii) F̄ (·;α, β) is decreasing in α ∈ R+;
(iv) F̄ (·;α, β) is increasing in β ∈ R+;
Then, for g(p), g(p∗),α ∈ E+

n and β ∈ D+
n (or, g(p), g(p∗),α ∈ D+

n and β ∈ E+
n ), we

have (
g(p1), g(p2), . . . , g(pn)

) w
�
(
g(p∗1), g(p

∗
2), . . . , g(p

∗
n)
)
=⇒ Y2:n ≥st Y ∗

2:n.
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Proof. Here, we present the proof only for the case when α1 ≥ α2 ≥ . . . ≥ αn, g(p1) ≥
g(p2) ≥ . . . ≥ g(pn) and β1 ≤ β2 ≤ . . . ≤ βn, since the proof for the other case is quite
similar. Let us set g(pi) = ui for i = 1, 2, . . . , n and g−1 denotes the inverse function
of g. The survival function of Y2:n, for t ≥ 0, can be expressed as

F̄Y2:n
(t) = P(Y2:n > t)

=

n∑
i=1

P(Yi ≤ t, Yj > t, for j 6= i) + P(Y1 > t, . . . , Yn > t)

=

n∑
i=1

[
FYi

(t)

n∏
j ̸=i

F̄Yj
(t)

]
+

n∏
i=1

F̄Yi
(t)

=

n∑
i=1

[
(1− piF̄ (t;αi, βi))

n∏
j ̸=i

pjF̄ (t;αj , βj)

]
+

n∏
i=1

piF̄ (t;αi, βi)

=

n∑
i=1

n∏
j ̸=i

pjF̄ (t;αj , βj)− (n− 1)

n∏
i=1

piF̄ (t;αi, βi)

=

n∑
i=1

n∏
j ̸=i

g−1(uj)F̄ (t;αj , βj)− (n− 1)

n∏
i=1

g−1(ui)F̄ (t;αi, βi).

To obtain the desired result, according to Lemma 2.5, it suffices to show that for each
fixed t ≥ 0, F̄Y2:n

(t) is decreasing and Schur-convex in ui’s. Taking the derivative of
F̄Y2:n

(t) with respect to uk is

∂F̄Y2:n
(t)

∂uk
=
∂g−1(uk)

∂uk

1

g−1(uk)

[
n∑
i ̸=k

n∏
j ̸=i

g−1(uj)F̄ (t;αj , βj)

−(n− 1)

n∏
i=1

g−1(ui)F̄ (t;αi, βi)

]

=
∂ log g−1(uk)

∂uk

[
n∑
i ̸=k

n∏
j ̸=i

g−1(uj)F̄ (t;αj , βj)− (n− 1)

n∏
i=1

g−1(ui)F̄ (t;αi, βi)

]
.

Since g−1(ui)F̄ (t;αi, βi) ∈ [0, 1], for any i = 1, 2, . . . , n, we have
n∏
j ̸=i

g−1(uj)F̄ (t;αj , βj) ≥
n∏
i=1

g−1(ui)F̄ (t;αi, βi),

and then
n∑
i ̸=k

n∏
j ̸=i

g−1(uj)F̄ (t;αj , βj) ≥
n∑
i ̸=k

n∏
i=1

g−1(ui)F̄ (t;αi, βi) = (n−1)

n∏
i=1

g−1(ui)F̄ (t;αi, βi).

From condition (i), we have ∂g−1(uk)
∂uk

< 0, which implies that F̄Y2:n(t) is decreasing in
uk’s. We can compute

J(u) :=
∂F̄Y2:n

(t)

∂u1
− ∂F̄Y2:n

(t)

∂u2
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=
∂ log g−1(u1)

∂u1

[
n∑
i ̸=1

n∏
j ̸=i

g−1(uj)F̄ (t;αj , βj)− (n− 1)

n∏
i=1

g−1(ui)F̄ (t;αi, βi)

]

−∂ log g
−1(u2)

∂u2

[
n∑
i ̸=2

n∏
j ̸=i

g−1(uj)F̄ (t;αj , βj)− (n− 1)

n∏
i=1

g−1(ui)F̄ (t;αi, βi)

]

≥ ∂ log g−1(u2)

∂u2

[
n∑
i ̸=1

n∏
j ̸=i

g−1(uj)F̄ (t;αj , βj)−
n∑
i ̸=2

n∏
j ̸=i

g−1(uj)F̄ (t;αj , βj)

]

=
∂ log g−1(u2)

∂u2

[
n∏
j ̸=2

g−1(uj)F̄ (t;αj , βj)−
n∏
j ̸=1

g−1(uj)F̄ (t;αj , βj)

]

=
∂ log g−1(u2)

∂u2

n∏
j ̸=1,j ̸=2

g−1(uj)F̄ (t;αj , βj)
[
g−1(u1)F̄ (t;α1, β1)

−g−1(u2)F̄ (t;α2, β2)
]

=
∂g−1(u2)

∂u2

1

g−1(u2)

n∏
j ̸=1,j ̸=2

g−1(uj)F̄ (t;αj , βj)
[
g−1(u1)F̄ (t;α1, β1)

−g−1(u2)F̄ (t;α2, β2)
]
.

The first inequality is true due to condition (ii). From condition (i), for u1 ≥ u2, we
have g−1(u1) < g−1(u2). With conditions (iii) and (iv), for α1 ≥ α2 and β1 ≤ β2, we
also have

F̄ (t;α1, β1) ≤ F̄ (t;α2, β1) ≤ F̄ (t;α2, β2).

By combining above observations, we readily observe that

g−1(u1)F̄ (t;α1, β1) < g−1(u2)F̄ (t;α2, β2)

⇒ g−1(u1)F̄ (t;α1, β1)− g−1(u2)F̄ (t;α2, β2) < 0.

On the other hand, from assumption (i) and the fact that ∂g−1(u2)
∂u2

< 0, it follows that

∂F̄Y2:n(t)

∂u1
− ∂F̄Y2:n(t)

∂u2
≥ 0.

Thus, from Lemma 2.4, it follows that F̄Y2:n(t) is Schur-convex in ui’s. This completes
the proof of the theorem.

Remark 3.2. It needs to be mentioned that the conditions “g is a differentiable and
strictly decreasing function and g−1 is log-convex in u ∈ R+” in Theorem 3.1 are
general and hold for many functions g. For example, consider some special cases in
the Table 1 that satisfy in the conditions (i) and (ii) of Theorem 3.1.

It should be mentioned that the Theorem 3.1 has a nice interpretation as follows:
under some conditions, if g(pi)’s are more dispersed than g(p∗i )’s, then the survival
function of fail-safe system with g(pi)’s is larger than that with g(p∗i )’s.
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Table 1: Some special g(p).
g(p) Domain Parameter Space

(1− p)/p (0, 1) −
− log p (0, 1) −

θ−1(p−θ − 1) (0, 1) θ ∈ (0,∞)
(1− log p)θ − 1 (0, 1) θ ∈ (0, 1]

The following four corollaries can be obtained from Theorem 3.1 directly. The
following mentioned semiparametric distributions in the following corollaries are very
flexible family of distributions. For additional discussion about the these models, one
may refer to Marshall and Olkin (2007). We develop results here by considering these
as lifetime distributions of components.

Corollary 3.3. Suppose the survival function of X is as follows

F̄ (t;α, β) = 1−
(
F (αt)

)β
, t > 0, α > 0, β > 0.

The partial derivatives of F̄ (t;α, β) with respect to α is

∂F̄ (t;α, β)

∂α
= −tβ

(
F (αt)

)β
r̃(αt) ≤ 0,

where r̃ is reversed hazard rate of baseline distribution, which means that F̄ (t;α, β) is
decreasing in α and the condition (iii) of Theorem 3.1 is satisfied. We also have

∂F̄ (t;α, β)

∂β
= −

(
F (αt)

)β
log
(
F (αt)

)
≥ 0,

which means that F̄ (t;α, β) is increasing in β and also condition (iv) of Theorem 3.1
is satisfied.

Corollary 3.4. Consider the survival function of X as

F̄ (t;α, β) = 1−
(
1−

(
F̄ (t)

)α)β
, t > 0, α > 0, β > 0.

The partial derivatives of F̄ (t;α, β) with respect to α is

∂F̄ (t;α, β)

∂α
= β

(
F̄ (t)

)α(
1−

(
F̄ (t)

)α)β−1

log
(
F̄ (t)

)
≤ 0,

which means that F̄ (t;α, β) is decreasing in α and the condition (iii) of Theorem 3.1
is satisfied. We also have

∂F̄ (t;α, β)

∂β
= −

(
1−

(
F̄ (t)

)α)β
log
(
1−

(
F̄ (t)

)α) ≥ 0,

which means that F̄ (t;α, β) is increasing in β and also condition (iv) of Theorem 3.1
is satisfied.
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Corollary 3.5. Suppose the survival function of X is given by

F̄ (t;α, β) =

(
1− F β(t)

)α
, t > 0, α > 0, β > 0.

The partial derivatives of F̄ (t;α, β) with respect to α is

∂F̄ (t;α, β)

∂α
= log

(
1− F β(t)

)(
1− F β(t)

)α
≤ 0,

which means that F̄ (t;α, β) is decreasing in α and the condition (iii) of Theorem 3.1
is satisfied. We also have

∂F̄ (t;α, β)

∂β
= −α

(
F β(t)

)
log
(
F β(t)

)(
1− F β(t)

)α−1

≥ 0,

which means that F̄ (t;α, β) is increasing in β and also condition (iv) of Theorem 3.1
is satisfied.

Corollary 3.6. Suppose the survival function of X is as follows

F̄ (t;α, β) =
1−

(
F (t)

)β
1− ᾱ

(
F (t)

)β , t > 0, α > 0, β > 0.

The partial derivatives of F̄ (t;α, β) with respect to α is

∂F̄ (t;α, β)

∂α
= −

(
F (t)

)β(
1−

(
F (t)

)β)(
1− ᾱ

(
F (t)

)β)2 ≤ 0,

which means that F̄ (t;α, β) is decreasing in α and the condition (iii) of Theorem 3.1
is satisfied. We also have

∂F̄ (t;α, β)

∂β
= −

α
(
F (t)

)β
log
(
F (t)

)(
1− ᾱ

(
F (t)

)β)2 ≥ 0,

which means that F̄ (t;α, β) is increasing in β and also condition (iv) of Theorem 3.1
is satisfied.

The following numerical example provides an illustration of the result established
in Theorem 3.1.

Example 3.7. Let us consider the standard exponential as the baseline distribu-
tion in Corollary 3.4. Set (α1, α2, α3) = (0.8, 0.4, 0.2), (β1, β2, β3) = (0.3, 1.1, 0.5),
(p1, p2, p3) = (e−6, e−1, e−3) and (p∗1, p

∗
2, p

∗
3) = (e−5, e−2, e−4). With g(p) = − log p, it

is easy to observe that
(
g(p1), g(p2), g(p3)

) w
�
(
g(p∗1), g(p

∗
2), g(p

∗
3)
)
.
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Figure 1: Plots of survival functions of Y2:3 and Y ∗
2:3.

We may question whether the result of Theorem 3.1 could hold if (g(p),β) 6∈ Fn?
The following discussion provides a counterexample.

Let us consider the standard exponential as the baseline distribution in Corol-
lary 3.5. Set (α1, α2, α3) = (0.8, 0.4, 0.2), (β1, β2, β3) = (0.7, 0.5, 0.2), (p1, p2, p3) =
(e−0.5, e−0.4, e−0.1) and (p∗1, p

∗
2, p

∗
3) = (e−0.7, e−0.3, e−0.2). With g(p) = − log p, it is

easy to observe that
(
g(p1), g(p2), g(p3)

) w
�
(
g(p∗1), g(p

∗
2), g(p

∗
3)
)
. But, the survival

functions of Y2:3 and Y ∗
2:3 satisfy the following:

F̄Y2:3
(0.002; g(p),β) ≈ 0.8702 > 0.8686 ≈ F̄Y ∗

2:3
(0.002; g(p∗),β),

F̄Y ∗
2:3
(0.01; g(p∗),β) ≈ 0.8948 > 0.8945 ≈ F̄Y2:3

(0.01; g(p),β).

This means that Y2:3 and Y ∗
2:3 cannot be compared in the usual stochastic order when

(g(p),β) 6∈ Fn, because it can be seen that the survival function of Y2:3 and Y ∗
2:3 cross

each other.
Next theorem shows that under some conditions, if βi’s are more dispersed than

β∗
i ’s, then the survival function of fail-safe system with βi’s is larger than that with
β∗
i ’s. Note that g : [0, 1] 7−→ R+ is considered as a differentiable and strictly increasing

function in the following theorem. Let us set

Fn =
{
(a, b) =

(
a1 . . . an
b1 . . . bn

)
: ai, bj > 0 and (ai − aj)(bi − bj) ≤ 0, i, j = 1, . . . , n

}
.

Theorem 3.8. Suppose X1, . . . , Xn(X
∗
1 , . . . , X

∗
n) are independent nonnegative random

variables with Xi ∼ F̄ (·;βi)(X∗
i ∼ F̄ (·;β∗

i )), where F̄ (·;βi)(F̄ (·;β∗
i )) denotes the sur-

vival function of Xi(X
∗
i ), and βi > 0(β∗

i > 0) is the distribution parameter of Xi(X
∗
i )

for i = 1, 2, . . . , n. Let Ip1 , . . . , Ipn be a set of independent Bernoulli random variables,
independent of Xi’s and X∗

i ’s, with E[Ipi ] = pi, i = 1, 2, . . . , n. Let Yi = IpiXi and
Y ∗
i = IpiX

∗
i , i = 1, 2, . . . , n. Assume that the following conditions hold:

(i) g : [0, 1] 7−→ R+ is a differentiable and strictly increasing function;



Orderings of fail-safe systems 118

(ii) F̄ (·;β) is decreasing in β ∈ R+;
(iii) F̄ (·;β) is log-convex in β ∈ R+;
Then, for (g(p),β) ∈ Fn and (g(p),β∗) ∈ Fn, we have(

β1, β2, . . . , βn
) w
�
(
β∗
1 , β

∗
2 , . . . , β

∗
n

)
=⇒ Y2:n ≥st Y ∗

2:n.

Proof. The assumption that (g(p),β) ∈ Fn implies that (g(pi)− g(pj))(βi − βj) ≤ 0,
which means that g(p1) ≥ g(p2) ≥ . . . ≥ g(pn) and β1 ≤ β2 ≤ . . . ≤ βn, or g(p1) ≤
g(p2) ≤ . . . ≤ g(pn) and β1 ≥ β2 ≥ . . . ≥ βn. Here, we present the proof only for the
case when g(p1) ≥ g(p2) ≥ . . . ≥ g(pn) and β1 ≤ β2 ≤ . . . ≤ βn, since the proof for the
other case is quite similar. Let us set g(pi) = ui for i = 1, 2, . . . , n and g−1 denotes the
inverse function of g. Based on Theorem 3.1, we have

F̄Y2:n
(t) =

n∑
i=1

n∏
j ̸=i

g−1(uj)F̄ (t;βj)− (n− 1)

n∏
i=1

g−1(ui)F̄ (t;βi), t ≥ 0.

To obtain the desired result, according to Lemma 2.5, it suffices to show that for each
fixed t > 0, F̄Y2:n(t) is decreasing and Schur-convex in βi’s. The partial derivative of
F̄Y2:n

(t) with respect to βk is given by

∂F̄Y2:n
(t)

∂βk
=
∂F̄ (t;βk)

∂βk

1

F̄ (t;βk)

[
n∑
i ̸=k

n∏
j ̸=i

g−1(uj)F̄ (t;βj)− (n− 1)

n∏
i=1

g−1(ui)F̄ (t;βi)

]

=
∂ log F̄ (t;βk)

∂βk

[
n∑
i ̸=k

n∏
j ̸=i

g−1(uj)F̄ (t;βj)− (n− 1)

n∏
i=1

g−1(ui)F̄ (t;βi)

]
.

From Theorem 3.1, we know that
n∑
i ̸=k

n∏
j ̸=i

g−1(uj)F̄ (t;βj)− (n− 1)

n∏
i=1

g−1(ui)F̄ (t;βi) ≥ 0.

Thus, conditions (ii) implies that F̄Y2:n
(t) is decreasing in βi’s. Now, in a similar

method, we can compute that

I(β) :=
∂F̄Y2:n

(t)

∂β1
− ∂F̄Y2:n

(t)

∂β2

=
∂ log F̄ (t;β1)

∂β1

[
n∑
i ̸=1

n∏
j ̸=i

g−1(uj)F̄ (t;βj)− (n− 1)

n∏
i=1

g−1(ui)F̄ (t;βi)

]

−∂ log F̄ (t;β2)
∂β2

[
n∑
i ̸=2

n∏
j ̸=i

g−1(uj)F̄ (t;βj)− (n− 1)

n∏
i=1

g−1(ui)F̄ (t;βi)

]

≤ ∂ log F̄ (t;β2)

∂β2

[
n∑
i ̸=1

n∏
j ̸=i

g−1(uj)F̄ (t;βj)−
n∑
i ̸=2

n∏
j ̸=i

g−1(uj)F̄ (t;βj)

]

=
∂ log F̄ (t;β2)

∂β2

[
n∏
j ̸=2

g−1(uj)F̄ (t;βj)−
n∏
j ̸=1

g−1(uj)F̄ (t;βj)

]
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=
∂ log F̄ (t;β2)

∂β2

n∏
j ̸=1,j ̸=2

g−1(uj)F̄ (t;βj)
[
g−1(u1)F̄ (t;β1)− g−1(u2)F̄ (t;β2)

]
=
∂F̄ (t;β2)

∂β2

1

F̄ (t;β2)

n∏
j ̸=1,j ̸=2

g−1(uj)F̄ (t;βj)
[
g−1(u1)F̄ (t;β1)− g−1(u2)F̄ (t;β2)

]
,

where first inequality is due to conditions (iii), for β1 ≤ β2, and the the following fact

∂ log F̄ (t, β1)

∂β1
≤ ∂ log F̄ (t, β2)

∂β2
≤ 0.

Further, for u1 ≥ u2 and β1 ≤ β2, it follows that

g−1(u1)F̄ (t;β1)− g−1(u2)F̄ (t;β2) > 0.

Then, we readily observe that

∂F̄Y2:n
(t)

∂β1
− ∂F̄Y2:n

(t)

∂β2
≤ 0,

or by the assumption that β1 ≤ β2, we have

(β1 − β2)
{∂F̄Y2:n(t)

∂β1
− ∂F̄Y2:n(t)

∂β2

}
≥ 0.

Thus, from Lemma 2.4, it follows that F̄Y2:n
(t) is Schur-convex in βi’s. This completes

the proof of the theorem.

Remark 3.9. It should be mentioned that the condition “g is a differentiable and
strictly increasing function” in Theorem 3.8 is general and holds for many functions g.
For example, for the cases when g(p) = p/(1− p), g(p) = log(1+ p) and also g(p) = pθ

for θ > 0, we can readily show that h is a strictly increasing function.

The following corollaries can be derived from Theorem 3.8 for the cases of propor-
tional hazard rate and scale models.

Corollary 3.10. Suppose X follows proportional hazard rate model with survival func-
tion

F̄ (t;β) = F̄ β(t), t > 0, β > 0.

The partial derivatives of F̄ (t;β) with respect to β is

∂F̄ (t;β)

∂β
= log(F̄ (t))F̄ β(t) ≤ 0,

which means that F̄ (t;β) is decreasing in β and the condition (ii) of Theorem 3.8 is
satisfied. We also have

∂2 log F̄ (t;β)

∂β2
= 0,

which means that F̄ (t;β) is log-convex in β and also condition (iii) of Theorem 3.8 is
satisfied.
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Corollary 3.11. Consider the survival function of scale model with

F̄ (t;β) = 1− F (βt), t > 0, β > 0.

The partial derivatives of F̄ (t;β) with respect to β is

∂F̄ (t;β)

∂β
= −xf(βt) ≤ 0,

which means that F̄ (t;β) is decreasing in α and the condition (ii) of Theorem 3.8 is
satisfied. We also have

∂2 log F̄ (t;β)

∂β2
= −t2r′(βt),

where r(t) is hazard rate function of baseline distribution, which means that F̄ (t;β) is
log-convex in β if r(t) is decreasing. Thus, the condition (iii) of Theorem 3.8 is also
satisfied.

The following numerical example provides an illustration of the result established
in Theorem 3.8.

Example 3.12. Let Weibull be the baseline survival function with F̄ (t) = e−t
2 , for

t > 0, in Corollary 3.10. Further, Set (β1, β2, β3) = (0.1, 1, 9), (β∗
1 , β

∗
2 , β

∗
3) = (0.2, 4, 6)

and (p1, p2, p3) = (e0.6 − 1, e0.3 − 1, e−0.4 − 1). With g(p) = log(1 + p), it is easy to
observe that

(
β1, β2, β3

) w
�
(
β∗
1 , β

∗
2 , β

∗
3

)
.
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Figure 2: Plots of survival functions of Y2:3 and Y ∗
2:3.

The survival functions of Y2:3 and Y ∗
2:3 are plotted in Figure 2, which confirms that

Y2:3 ≥st Y ∗
2:3.
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4 Stochastic comparisons with dependent components
Most of the existing literature on stochastic comparisons of fail-safe systems have fo-
cused on the case when the components in the systems are all independent. However,
when such technical systems are in operation, many important factors, such as operat-
ing conditions, environmental conditions and stress factors, are shared and experienced
by all the components in the system. It would, therefore, be reasonable for the lifetimes
of components in a system to be dependent. Now, let us set

Fn =
{
(a, b) =

(
a1 . . . an
b1 . . . bn

)
: ai, bj > 0 and (ai − aj)(bi − bj) ≤ 0, i, j = 1, . . . , n

}
.

Theorem 4.1. Suppose X1, . . . , Xn(X
∗
1 , . . . , X

∗
n) are dependent nonnegative random

variables with Xi ∼ F̄ (·;βi)(X∗
i ∼ F̄ (·;β∗

i )) with Archimedean copula with generator ϕ,
where F̄ (·;βi)(F̄ (·;β∗

i )) denotes the survival function of Xi(X
∗
i ), and βi > 0(β∗

i > 0)
is the distribution parameter of Xi(X

∗
i ) for i = 1, 2, . . . , n. Let Ip1 , . . . , Ipn be a

set of independent Bernoulli random variables, independent of Xi’s and X∗
i ’s, with

E[Ipi ] = pi, i = 1, 2, . . . , n. Let Yi = IpiXi and Y ∗
i = IpiX

∗
i , i = 1, 2, . . . , n. Assume

that the following conditions hold:
(i) g : [0, 1] 7−→ R+ is a differentiable and strictly increasing function;
(ii) F̄ (·;β) is decreasing and log-convex in β ∈ R+;
(iii) ψ(t) is log-concave in t;
Then, for (g(p),β) ∈ Fn and (g(p),β∗) ∈ Fn, we have(

β1, . . . , βn
) w
�
(
β∗
1 , . . . , β

∗
n

)
=⇒ Y2:n ≥st Y ∗

2:n.

Proof. The assumption that (g(p),β) ∈ Fn implies that (g(pi)− g(pj))(βi − βj) ≤ 0,
which means that g(p1) ≥ g(p2) ≥ . . . ≥ g(pn) and β1 ≤ β2 ≤ . . . ≤ βn, or g(p1) ≤
g(p2) ≤ . . . ≤ g(pn) and β1 ≥ β2 ≥ . . . ≥ βn. Here, we present the proof only for the
case when g(p1) ≥ g(p2) ≥ . . . ≥ g(pn) and β1 ≤ β2 ≤ . . . ≤ βn, since the proof for the
other case is quite similar. Let us set g(pi) = ui for i = 1, 2, . . . , n and g−1 denotes the
inverse function of g. The survival function of Y2:n, for t ≥ 0, can be written as

F̄Y2:n(t) = P(Y2:n > t)

=

n∑
i=1

P(Yi ≤ t, Yj > t, forj 6= i) + P(Y1 > t, . . . , Yn > t)

=

n∑
i=1

[
P(Yj > t, forj 6= i)− P(Yj > t, forj = 1, . . . , n)

]
+P (Y1 > t, . . . , Yn > t)

=

n∑
i=1

P(Yj > t, forj 6= i)− (n− 1)P (Y1 > t, . . . , Yn > t)

=

n∑
i=1

(

n∏
j ̸=i

pj)P(Xj > t, forj 6= i)− (n− 1)(

n∏
i=1

pi)P (X1 > t, . . . ,Xn > t)

=

n∑
i=1

 n∏
j ̸=i

g−1(uj)

ψ
 n∑
j ̸=i

ϕ(F̄ (t;βi))


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−(n− 1)

(
n∏
i=1

g−1(ui)

)(
ψ

[
n∑
i=1

ϕ(F̄ (t;βi))

])
.

To obtain the desired result, according to Lemma 2.5, it suffices to show that for each
fixed t ≥ 0, F̄Y2:n(t) is decreasing and Schur-convex in βi’s. Taking the derivative of
F̄Y2:n

(t) with respect to βk is given by

∂F̄Y2:n
(t)

∂βk
=

[
n∑
i ̸=k

 n∏
j ̸=i

g−1(uj)

ψ′

 n∑
j ̸=i

ϕ(F̄ (t;βj))


−(n− 1)

(
n∏
i=1

g−1(ui)

)(
ψ′

[
n∑
i=1

ϕ(F̄ (t;βi))

])]

× ψ(ϕ(F̄ (t;βk)))

ψ′(ϕ(F̄ (t;βk)))
× ∂ log(F̄ (t;βk))

∂βk
.

It is easy to observe that
n∏
j ̸=i

g−1(uj) ≥
n∏

m=1

g−1(um) ≥ 0, for i ∈ {1, 2, . . . , n} (1)

n∑
j ̸=i

ϕ(F̄ (t;βj)) ≤
n∑

m=1

ϕ(F̄ (t;βm)), for i ∈ {1, 2, . . . , n}

and then

ψ′(

n∑
j ̸=i

ϕ(F̄ (t;βj))) ≤ ψ′(

n∑
m=1

ϕ(F̄ (t;βm))) ≤ 0, (Because ψ′′ > 0). (2)

So, according to (1) and (2), we can observe that

A =

n∑
i ̸=k

 n∏
j ̸=i

g−1(uj)

ψ′

 n∑
j ̸=i

ϕ(F̄ (t;βj))


−(n− 1)

(
n∏
i=1

g−1(ui)

)(
ψ′

[
n∑
i=1

ϕ(F̄ (t;βi))

])

=

n∑
i ̸=k


 n∏
j ̸=i

g−1(uj)

ψ′

 n∑
j ̸=i

ϕ(F̄ (t;βj))


−

(
n∏
i=1

g−1(ui)

)(
ψ′

[
n∑
i=1

ϕ(F̄ (t;βi))

])}
≤ 0.

Since F̄ (x;βi) is decreasing with respect to βi, it follows that

∂ log(F̄ (t;βi))

∂βi
≤ 0.
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By combining the above results, we can conclude that F̄Y2:n
(t) is decreasing in βi’s.

Now, we have

J(β) :=
∂F̄Y2:n

(t)

∂β1
− ∂F̄Y2:n

(t)

∂β2

=

[
n∑
i ̸=1

 n∏
j ̸=i

g−1(uj)

ψ′

 n∑
j ̸=i

ϕ(F̄ (t;βj))


−(n− 1)

(
n∏
i=1

g−1(ui)

)(
ψ′

[
n∑
i=1

ϕ(F̄ (t;βi))

])]

× ψ(ϕ(F̄ (t;β1)))

ψ′(ϕ(F̄ (t;β1)))

∂ log(F̄ (t;β1))

∂β1

−

[
n∑
i ̸=2

 n∏
j ̸=i

g−1(uj)

ψ′

 n∑
j ̸=i

ϕ(F̄ (t;βj))


−(n− 1)

(
n∏
i=1

g−1(ui)

)(
ψ′

[
n∑
i=1

ϕ(F̄ (t;βi))

])]

× ψ(ϕ(F̄ (t;β2)))

ψ′(ϕ(F̄ (t;β2)))

∂ log(F̄ (t;β2))

∂β2

≤

{
n∑
i ̸=1

 n∏
j ̸=i

g−1(uj)

ψ′

 n∑
j ̸=i

ϕ(F̄ (t;βj))


−

n∑
i ̸=2

 n∏
j ̸=i

g−1(uj)

ψ′

 n∑
j ̸=i

ϕ(F̄ (t;βj))

}

× ψ(ϕ(F̄ (t;β1)))

ψ′(ϕ(F̄ (t;β1)))

∂ log(F̄ (t;β1))

∂β1

=

g−1(u1)

ψ′

 n∑
j ̸=2

ϕ(F̄ (t;βj))

− g−1(u2)

ψ′

 n∑
j ̸=1

ϕ(F̄ (t;βj))


×

 n∏
j ̸={1,2}

g−1(uj)

 ψ(ϕ(F̄ (t;β1)))

ψ′(ϕ(F̄ (t;β1)))
× ∂ log(F̄ (t;β1))

∂β1

sgn
=

g−1(u1)

ψ′

 n∑
j ̸=2

ϕ(F̄ (t;βj))

− g−1(u2)

ψ′

 n∑
j ̸=1

ϕ(F̄ (t;βj))


× ψ(ϕ(F̄ (t;β1)))

ψ′(ϕ(F̄ (t;β1)))

∂ log(F̄ (t;β1))

∂β1
≤ 0.

The first and second inequalities are true due to following reasons: Since F̄ (x;β) is
decreasing in β and ϕ is also decreasing, for β1 ≤ β2, we have

ϕ(F̄ (t;β1)) ≤ ϕ(F̄ (t;β2)). (3)



Orderings of fail-safe systems 124

Thus, it holds that
n∑
j ̸=1

ϕ(F̄ (t;βj)) =

n∑
j=1

ϕ(F̄ (t;βj))− ϕ(F̄ (t;β1))

≥
n∑
j=1

ϕ(F̄ (t;βj))− ϕ(F̄ (t;β2))

=

n∑
j ̸=2

ϕ(F̄ (t;βj)).

From convexity of ψ, we immediately conclude that 0 ≥ ψ′
[∑n

j ̸=1 ϕ(F̄ (t;βj))
]

≥

ψ′
[∑n

j ̸=2 ϕ(F̄ (t;βj))
]

and then

0 ≤ −ψ′

 n∑
j ̸=1

ϕ(F̄ (t;βj))

 ≤ −ψ′

 n∑
j ̸=2

ϕ(F̄ (t;βj))

 . (4)

On the other hand, since g is increasing, g−1 is also increasing and then for u1 ≥ u2,
we have

u1 ≥ u2 =⇒ 0 ≤ g−1(u2) ≤ g−1(u1). (5)
By combining (4) and (5), we have

g−1(u2)ψ
′

 n∑
j ̸=1

ϕ(F̄ (t;βj))

 ≥ g−1(u1)ψ
′

 n∑
j ̸=2

ϕ(F̄ (t;βj))

 . (6)

Because ψ is log-concave (or equivalently, ψ/ψ′ is increasing), based on (3), it follows
that

ψ(ϕ(F̄ (t;β1)))

ψ′(ϕ(F̄ (t;β1)))
≤ ψ(ϕ(F̄ (t;β2)))

ψ′(ϕ(F̄ (t;β2)))
≤ 0. (7)

Since F̄ (x;β) is decreasing and log-convex with respect to β, by the assumption that
β1 ≤ β2, we also have

∂ log(F̄ (t;β1))

∂β1
≤ ∂ log(F̄ (t;β2))

∂β2
≤ 0. (8)

From (7) and (8), we then get

ψ(ϕ(F̄ (t;β1)))

ψ′(ϕ(F̄ (t;β1)))

∂ log(F̄ (t;β1))

∂β1
≥ ψ(ϕ(F̄ (t;β2)))

ψ′(ϕ(F̄ (t;β2)))

∂ log(F̄ (t;β2))

∂β2
≥ 0. (9)

Now, From (6) and (9), we conclude that J(β) ≤ 0 and then

(β1 − β2)

(
∂F̄Y2:n

(t)

∂β1
− ∂F̄Y2:n

(t)

∂β2

)
≥ 0,

which, from Lemma 2.4, it follows that F̄Y2:n
(t) is Schur-convex in βi’s. This completes

the proof of the theorem.
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Remark 4.2. It should be mentioned that the condition “ ψ is log-concave” in Theorem
4.1 is quite general and is easy to verify for many well-known Archimedean copulas.
For example, consider
(i) the Hougaard copula with the generator ψ(t) = e1−(1+t)θ for θ ≥ 1. Note that
logψ(t) = 1 − (1 + t)θ and then [logψ(t)]′′ = −θ(θ − 1)(1 + t)θ−2 is nonpositve in
t ∈ [0, 1], for θ ≥ 1, which means that ψ is log-concave in t ∈ [0, 1];
Next, let us consider
(ii) the Gumbel-Hougaard copula with generator ψ(t) = e

1
θ (1−e

t), for θ ∈ (0, 0.5(3 −√
5)). It can be observed that logψ(t) = 1

θ (1 − et) and then [logψ(t)]′′ = − 1
θ e
t is

nonpositive in t ∈ [0, 1], for θ ∈ (0, 0.5(3−
√
5)), which means that ψ is log-concave in

t ∈ [0, 1].
The following numerical example provides an illustration of the result established

in Theorem 4.1.
Example 4.3. Let us consider the standard exponential as the baseline distribution
in Theorem 3.4. Set (β1, β2, β3) = (0.2, 0.4, 0.8), (β∗

1 , β
∗
2 , β

∗
3) = (0.3, 0.3, 1.1) and

(p1, p2, p3) = (e0.6 − 1, e0.3 − 1, e0.1 − 1). With g(p) = log(1 + p), it is easy to observe
that

(
β1, β2, β3

) w
�
(
β∗
1 , β

∗
1 , β

∗
1

)
. Now, we choose the Hougaard copula with the generator

ψ(t) = e1−(1+t)θ with θ ≥ 1. Then, the survival function of Y2:3 and Y ∗
2:3, for t ≥ 0

respectively, are given by

F̄Y2:3
(t) = g−1(u2)g

−1(u3) exp

{[
(1 + β2x)

1/θ + (1 + β3x)
1/θ − 1

]θ}
+g−1(u1)g

−1(u3) exp

{[
(1 + β1x)

1/θ + (1 + β3x)
1/θ − 1

]θ}
+g−1(u1)g

−1(u2) exp

{[
(1 + β1x)

1/θ + (1 + β2x)
1/θ − 1

]θ}
−2g−1(u1)g

−1(u2)g
−1(u3) exp

{[
(1 + β1x)

1/θ + (1 + β2x)
1/θ

+(1 + β3x)
1/θ − 2

]θ}
F̄Y ∗

2:3
(t) = g−1(u2)g

−1(u3) exp

{[
(1 + β∗

2x)
1/θ + (1 + β∗

3x)
1/θ − 1

]θ}
+g−1(u1)g

−1(u3) exp

{[
(1 + β∗

1x)
1/θ + (1 + β∗

3x)
1/θ − 1

]θ}
+g−1(u1)g

−1(u2) exp

{[
(1 + β∗

1x)
1/θ + (1 + β∗

2x)
1/θ − 1

]θ}
−2g−1(u1)g

−1(u2)g
−1(u3) exp

{[
(1 + β∗

1x)
1/θ + (1 + β∗

2x)
1/θ

+(1 + β∗
3x)

1/θ − 2

]θ}
.
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Figure 3: Plots of survival functions of Y2:3 and Y ∗
2:3 with Hougaard copula.

The survival functions of Y2:3 and Y ∗
2:3, for θ = 2, are plotted in Figure 3, which

implies that Y2:3 ≥st Y ∗
2:3.

5 Concluding remarks
A fail-safe is a special a design feature that, when a failure occurs, will respond in a
way that no harm happens to the system itself. An example of a fail-safe system is
an elevator in which brakes are held off brake pads by tension and if the tension gets
lost, the brakes latch on the rails in the shaft thus preventing the elevator from falling.
There are many similar fail-safe systems in day to day use.

In this paper, under some conditions and by using the concept of vector majorization
and related orders, we have discussed stochastic comparisons of fail-safe systems under
random shocks in the sense of usual stochastic order.

Here, we have obtained results for the usual stochastic order. Hazard rate, reversed
hazard rate and likelihood ratio orders of these results can be considered as a topic for
future research.
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