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1 Introduction
The inverse Rayleigh (IR) distribution has found applications in various fields of science
and technology, including acoustics (Khan and King, 2015). Several authors, such as
Gharraph (1993), Mukarjee and Maitim (1996), Guobing (2015), Abdel-Monem (2003),
and Soliman et al. (2010), have proposed different methods for estimating the distribu-
tion parameters of the IR distribution. In this study, we present the probability density
function and cumulative distribution function (cdf) of the IR distribution (IR(θ)), re-
spectively, as follows

f (x; θ) =
2θ

x3
e−

θ
x2 , x > 0, θ > 0, (1)
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F (x; θ) = e−
θ
x2 , x > 0, θ > 0, (2)

in which θ is the scale parameter. Consider a multicomponent system with k compo-
nents, where the strengths of each component are represented by independently and
identically distributed random variables X1, . . . , Xk. Each component is subjected to
a random stress variable Y . The system is considered operational only if at least s
(where s < k) strengths exceed the stress.

Let Y,X1, . . . , Xk be independent random samples, where G(y) represents the con-
tinuous distribution function of Y , and F (x) represents the common continuous dis-
tribution function of X1, . . . , Xk. The reliability of a multicomponent stress-strength
model, developed by Bhattacharyya and Johnson (1974), is given by

Rs,k = P (at Least s of the (X1, . . . , Xk) exceed Y )

=

k∑
i=s

(
k

i

)∫ ∞

−∞
(1− F (y))

i
(F (y))

k−i
dG(y), (3)

where X1, . . . , Xk are independent random variables with a cdf F (x) and are subject
to the common random stress Y . The reliability in a multicomponent stress-strength
model, as defined in (1), has been studied by Bhattacharyya and Johnson (1974). Var-
ious authors have also investigated the reliability of single component stress-strength
models for different distributions. These authors include Enis and Geisser (1971),
Downtown (1973), Awad and Gharraf (1986), McCool (1991), Nandi and Aich (1996),
Surles and Padgett (1998), Raqab and Kundu (2005), Kundu and Gupta (2005), Kundu
and Gupta (2006), Raqab and Kundu (2005), Kundu and Raqab (2009), Asgharzadeh
et al. (2011), Lio and Tsai (2012), Al-Mutairi et al. (2013), and Ghitany et al. (2015).
In recent years, several authors have considered the estimation of reliability in multi-
component stress-strength systems as proposed by Bhattacharyya and Johnson (1974)
and Pandey and Uddin (1985). For instance, Rao and Kantam (2010), Rao (2012), Rao
(2012), and Rao et al. (2017) have utilized these methods to estimate the reliability of
multicomponent stress-strength systems for different distributions such as log-logistic,
generalized exponential, and Rayleigh.

The hierarchical Bayesian prior distribution was initially introduced by Lindley
and Smith (1972) and later examined by Han (1997). Subsequently, E-Bayesian and
hierarchical Bayesian methods were introduced. Recently, Han (2006) and Han (2011)
employed E-Bayesian and hierarchical Bayesian methods to estimate the exponential
distribution parameter and the reliability of the binomial distribution, respectively.
Jaheen and Okasha (2011) utilized these methods to estimate the reliability of the Type
12 distribution based on Type II progressive censoring samples. Yousefzadeh (2017)
employed them to estimate the Pascal distribution parameter, while Yaghoobzadeh
(2019) utilized them to estimate the scale parameter of the Gompertz distribution
under type II censoring schemes based on fuzzy data. Yaghoobzade and Makhdoom
(2021) obtained E-Bayesian and hierarchical Bayesian estimations for R = P (X>Y )
in the Weibull distribution.

The remainder of the paper is structured as follows: This study focuses on obtaining
E-Bayesian estimation and hierarchical Bayesian estimation of Rs,k using the square
error loss (SEL) function L

(
θ̂, θ
)
= (θ̂ − θ)

2
in Section 2. In Section 3, a simulation
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study is conducted using the Monte Carlo method. Additionally, we demonstrate the
estimation process using two real data sets in Section 4. Finally, we conclude the paper
in Section 5.

2 Methods of estimating Rs,k

Let us consider independent random variables X (stress) and Y (strength) that follow
the IR distributions with parameters θ1 and θ2 respectively. Using equation (3), we
can determine the reliability of a multicomponent stress-strength system for the IR
distribution as follows.

Rs,k =

k∑
i=s

(
k

i

)∫ ∞

0

(
1− e

− θ1
y2

)i(
e
− θ1

y2

)k−i(
2θ2
y3

e
− θ2

y2

)
dy.

By assuming v = θ2
θ1

and introducing a variable transformation t = e
− θ1

y2 , we have

Rs,k = v

k∑
i=s

(
k

i

)∫ 1

o

(1− t)
i
tk+v−i−1dt

= v

k∑
i=s

(
k

i

)
B (i+ 1, k + v − i)

= v

k∑
i=s

k!

(k − i)!

 i∏
j=0

(k + v − j)

−1

. (4)

2.1 E-Bayesian estimation of Rs,k

In this subsection, we calculate the Bayesian and E-Bayesian estimates for Rs,k. We
assume that θ1 and θ2 have independent gamma(a, b) and gamma(c, d) priors, respec-
tively. for a, b, c, d > 0, i.e.,

π1(θ1|θ1a, b) =
ba

Γ(a)
θa−1
1 e−bθ1 ,

π2(θ2|c, d) =
dc

Γ(c)
θc−1
2 e−dθ2 .

The derivative of π1(θ1|θ1a, b) with respect to θ1 is given by

dπ1(θ1|θ1a, b)
dθ1

=
baθ1

a−2e−bθ1

Γ(a)
((a− 1)− bθ1).

According to Han (1997), it is recommended to choose “a” and “b” in a way that ensures
π1(θ1|θ1a, b)is a decreasing function of θ1. Therefore, “b” should be greater than 0 and
“a” should be between 0 and 1. When a = 1, increasing the value of b results in a
thinner tail of the density function. However, a thinner-tailed prior distribution often
reduces the robustness of Bayesian estimation. Hence, the hyper-parameter b should
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be chosen such that it satisfies the constraint 0 < b < c1, where c1 is a specified upper
bound (a positive constant). For this study, we focus exclusively on the case when
a = 1.

In this case, the density function π1(θ1|θ1a, b) becomes

π1 (θ1|b) = be−bθ1 , θ1 > 0. (5)

Also, the derivative of π2 (θ2|c, d) with respect to θ2 is given by

dπ2 (θ2|c, d)
dθ2

=
dcθ2

c−2e−dθ2

Γ(c)
((c− 1)− dθ2) .

Similarly, in accordance with Han (1997), c and d should be chosen in such way to
guarantee that π2(θ2|c, d) is a decreasing function of θ2. Thus, d > 0 and 0 < c < 1.
Given c = 1, and the larger the value of d, the thinner the tail of the density function.
The hyper-parameter d should be chosen under the restriction 0 < d < c2, where c2
is a given upper bound (c2 is a positive constant). In this study, we only consider the
case when c = 1. In this case, the density function π2 (θ2|c, d) becomes

π2 (θ2d) = de−eθ2 , θ2 > 0. (6)

Based on the priors (5) and (6), the joint prior of θ1 and θ2 is

π (θ1, θ2) = bde−bθ1−dθ2 , θ1 > 0, θ2 > 0, b, d > 0. (7)

Also, hyper-parameters b and d satisfy D = {(b, d)|0 < b < c1, 0 < d < c2}. Suppose
that the prior distribution of b is uniform distribution in (0, c1), and the prior distri-
bution of d is uniform distribution in (0, c2), when b and d are independent, the joint
density of b and d is given by

π (b, d) = π (b)π (d) =
1

c1c2
, 0 < b < c1, 0 < d < c2.

Suppose X1, . . . , Xn is a random sample of IR(θ1) and Y1, . . . , Ym is a random of
IR (θ2). Therefore, the likelihood function of the observed data can be written as

L (data|θ1, θ2) ∝ θn1 θ
m
2 exp

−θ1

n∑
i=1

1

x2
i

− θ2

m∑
j=1

1

y2j

 , (8)

where

s1 = b+

n∑
i=1

1

x2
i

, s2 = e+

m∑
j=1

1

y2j
.

The Bayesian estimation of Rs,k, under the SEL function is

R̂Bay (b, d)=

k∑
i=s

k!

(k − i)!

∫ ∞

0

∫ ∞

0

v

 i∏
j=0

(k + v − j)

−1

π∗ (θ1, θ2|data) dθ1dθ2
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=

k∑
i=s

k!

(k − i)!

∫ ∞

0

∫ ∞

0

(
θ2
θ1

) i∏
j=0

(
θ2

θ2 + θ1 (k − j)

)
π∗ (θ1, θ2|data) dθ1dθ2.

Since obtaining a closed form expression for R̂s,k is impossible, we can expand θ2
θ2+θ1(k−j)

also in Taylor series (ignoring powers above 2), and approximate R̂Bay (b, d). Therefore,

θ2
θ2 + θ1(k − j)

≈ 1

k + 1− j
+

1

(k + 1− j)
2 (θ1 − 1)− 1

(k + 1− j)
2 (θ2 − 1)

− k − j

(k + 1− j)
3 (θ1 − 1)

2
+

1

(k + 1− j)
3 (θ2 − 1)

2

+
k − j − 1

(k + 1− j)
3 (θ1 − 1)(θ2 − 1). (9)

According to (9), we can obtain R̂Bay (b, d) as the following form

R̂Bay(b, d)≈
k∑

i=s

k!

(k − i)!

i∏
j=0

[
(k + 1− j)A02 +A12 −A03

(k + 1− j)
2

+
(k − j − 3)A03 − (k + 1− j)A12 + (k − j − 1)A13 +A14 − (k − j)A22

(k + 1− j)
3

]
,

where Asl = Γ(n+s)Γ(m+l)

sn+s
1 sm+l

2

. The definition for E-Bayesian estimation was originally
addressed by Han (2006) as follows.

Definition 2.1. In consideration prior ofR̂Bay (b, d),

R̂EB =

∫ ∫
R̂Bay (b, d)π3 (b, d) dbdd, b, d ∈ D,

is called the E-Bayesian estimation of Rs,k (briefly E-Bayesian estimation, the full
name should be expected Bayesian estimation), which is assumed to be finite, where D
is the domain of b and d, R̂Bay (b, d) is the Bayesian estimation of Rs,k with hyper
parameters b and d, and π3 (b, d) is the density function of b and d over D.

Definition (2.1) indicates that the E-Bayesian estimation of Rs,k is just the ex-
pectation of the Bayesian estimation of Rs,k for all the hyperparameters. Therefore,
according to Equations (9), the E-Bayesian estimation of Rs,k is given by

R̂EB =
1

c1c2

k∑
i=s

k!

(k − i)!

i∏
j=0

[
(k + 1− j)B0C2 +B1C2 −B0C3

(k + 1− j)
2

+
(k − j − 3)B0C3−(k + 1− j)B1C2+(k − j − 1)B1C3+B1C4−(k − j)B2C2

(k + 1− j)
3

]
,

where

Br = (n+ r) Γ(n+ r)

( n∑
i=1

1

x2
i

)−(n+r+1)

−

(
c1 +

n∑
i=1

1

x2
i

)−(n+r+1)
 ,



E-Bayesian and hierarchical Bayesian estimation of reliability 100

Cr = (m+ r) Γ (m+ r)


 m∑

j=1

1

y2j

−(m+r+1)

−

c2 +

m∑
j=1

1

y2j

−(m+r+1)
 .

Lindley and Smith (1972) addressed an idea of a hierarchical prior distribution, as
follows.

Definition 2.2. If λ is hyperparameter in the parameter of θ, the prior density function
of θ is π (θ|λ) , and the prior density function of the hyperparameter of λ is π(λ), then
the hierarchical prior density function of θ is defined as follows:

π (θ) =

∫
π (θ|λ)π (λ) dλ, λ ∈ Λ.

According to equations (5) and (6) and definition (2.2), the hierarchical prior density
distributions of θ1 and θ2 are given by

π(θi) =
1− ciθie

−ciθi − e−ciθi

ciθ2i
, i = 1, 2. (10)

According to equations (8) and (10), the hierarchical posterior density function of θ1
and θ2 given the data is

π∗∗(θ1, θ2|data) ∝ θn−2
1 θm−2

2 e−c1θ1−c2θ2(1− c1θ1e
−c1θ1 − e−c1θ1)

×(1− c2θ2e
−c2θ2 − e−c2θ2). (11)

Now, using equations (9) and (11), the hierarchical Bayesian estimation of Rs,k under
the SEL function is as follows:

R̂HB =

k∑
i=s

k!

(k − i)!

∫ ∞

0

∫ ∞

0

(
θ2
θ1

) i∏
j=0

(
θ2

θ2 + θ1 (k − j)

)
π∗∗ (θ1, θ2|data) dθ1dθ2

≈
k∑

i=s

k!

(k − i)!

i∏
j=0

1

k + 1− j
S (n,m) +

3k − 2j + 2

(k + 1− j)
3S (n+ 1,m)

− 2

(k + 1− j)
2S (n,m+ 1)− k − j

(k + 1− j)
3S (n+ 2,m)

+
1

(k + 1− j)
3S (n,m+ 2) +

k − j − 1

(k + 1− j)
3S (n+ 1,m+ 1) ,

where

S (n,m) = Γ (n− 2) Γ (m)

(
n∑

i=1

1

x2
i

)−(n−2)
 m∑

j=1

1

y2j

−m

−c2Γ (n− 2) Γ (m+ 1)

(
n∑

i=1

1

x2
i

)−(n−2)
c2 +

m∑
j=1

1

y2j

−(m+1)
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−Γ (n− 2) Γ (m− 1)

(
n∑

i=1

1

x2
i

)−(n−2)
c2 +

m∑
j=1

1

y2j

−(m−1)

−c1Γ (n− 1) Γ (m)

(
n∑

i=1

1

x2
i

)−(n−1)
 m∑

j=1

1

y2j

−m

−Γ (n− 2) Γ (m)

(
c1 +

n∑
i=1

1

x2
i

)−(n−2)
 m∑

j=1

1

y2j

−m

+c1c2Γ (n− 1) Γ (m+ 1)

(
c1 +

n∑
i=1

1

x2
i

)−(n−1)
c2 +

m∑
j=1

1

y2j

−(m+1)

+c1Γ (n− 1) Γ (m)

(
c1 +

n∑
i=1

1

x2
i

)−(n−1)
c2 +

m∑
j=1

1

y2j

−m

+c2Γ (n− 2) Γ (m+ 1)

(
c1 +

n∑
i=1

1

x2
i

)−(n−2)
c2 +

m∑
j=1

1

y2j

−(m+1)

+Γ (n− 2) Γ (m)

(
c1 +

n∑
i=1

1

x2
i

)−(n−2)
c2 +

m∑
j=1

1

y2j

−m

.

3 Numerical experiments
In this section, a Monte Carlo simulation is presented to illustrate all the estimation
methods described in Section 2.

3.1 Simulation study
In this subsection, the Bayesian estimation, E-Bayesian, and hierarchical Bayesian of
parameter Rs,k are compared together. The simulation steps are shown below.
Step 1: For given value of the prior parameter (0, c1) we generate b from the uniform
prior density π (b) = 1

c1
, 0 < b < c1.

Step 2: For given value of the prior parameter (0, c2) we generate d from the uniform
prior density π (d) = 1

c2
, 0 < d < c2.

Step 3: θ1 is produced using b estimated in the step 1, using equation (5), and θ2 is
produced using d estimated in the step 2, using equation (6).
Step 4: For given value of the θ1 and θ2, the samples with different n and m of IR(θ1)
and IR(θ2) distributions, respectively are produced.
Step 5: Using the θ1 and θ2 estimated in the step 4, the samples with different n and
m of IR(θ1) and IR(θ2) distributions, respectively. Then, the Bayesian, E-Bayesian,
and hierarchical Bayesian estimations of Rs,k were estimated.

Steps 1 to 5 have been repeated 1000 times, and the average absolute bias (AAB)
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Table 1: The AAB and MSE of the estimates of Rs,k. In each cell the second row
represents MSE of the estimates of Rs,k.

(s, k) (n,m) R̂B R̂EB R̂HB

(c1, c2) = (3, 4)
( 2,4) (10,10) 0.1552 0.1988 0.1432

(0.0174) (0.1277) (0.0156)
(10, 20) 0.1466 0.1877 0.1355

(0.0167) (0.1174) (0.0140)
(10, 30) 0.1323 0.1790 0.1290

(0.0152) (0.1168) (0.0138)
(10,50) 0.1299 0.1653 0.1199

(0.0145) (0.1159) (0.0127)
(20,20) 0.1179 0.1568 0.1088

(0.0137) (0.1143) (0.0118)
(30,20) 0.1099 0.1425 0.0977

(0.0129) (0.1139) (0.0108)
(50,20) 0.0988 0.1377 0.0879

(0.0118) (0.1129) (0.0097)
(3,5) (10,10) 0.1444 0.1766 0.1299

(0.0157) (0.1168) (0.0138)
(10,20) 0.1337 0.1658 0.1199

(0.0148) (0.1154) (0.0123)
(10,30) 0.1298 0.1588 0.1190

(0.0139) (0.1145) (0.0118)
(10,50) 0.1175 0.1433 0.1078

(0.0129) (0.1138) (0.0108)
(20,20) 0.1169 0.1389 0.1045

(0.0117) (0.1129) (0.0099)
(30, 20) 0.1159 0.1299 0.0943

(0.0102) (0.1101) (0.0088)
(50, 20) 0.1150 0.1219 0.0765

(0.0100) (0.1010) (0.0068)
(c1, c2) = (3.5, 4.5)

( 2,4) (20,30) 0.1434 0.1757 0.1290
(0.0159) (0.1168) (0.0129)

(50, 40) 0.1319 0.1646 0.1200
(0.0147) (0.1157) (0.0117)

(70, 50) 0.1208 0.1548 0.1119
(0.0135) (0.01147) (0.0109)

(80, 90) 0.1199 0.1477 0.1109
(0.0127) (0.0109) (0.0099)

(3,5) (20, 30) 0.1379 0.1623 0.1177
(0.0128) (0.1128) (0.0117)

(50, 40) 0.1225 0.1524 0.1158
(0.0118) (0.1009) (0.0107)

(70, 50) 0.1169 0.1433 0.1149
(0.0092) (0.0924) (0.0088)

(80, 90) 0.1157 0.1246 0.1127
(0.0083) (0.0743) (0.0055)

estimation and its mean square error (MSE) were estimated and are listed in Table
1. All estimates under the SEL function is obtained for (s, k) = (2, 4) , (3, 5) and
(c1, c2) = (3, 4) , (3.5, 4.5), respectively. The performance of all estimates have been
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compared numerically of the MSE value. The simulation is conducted by R software.
Based on tabulated ABB and MSE values, the following conclusions can be drawn from
Table 1.
a. Since ABB and MSE values of the hierarchical Bayesian estimation of Rs,k are less
than ABB and MSE values of those of Bayesian and E-Bayesian estimations in both
cases of (s, k), therefore, the performance of the hierarchical Bayesian estimation of
Rs,k under SEL function is better than that of Bayesian and E-Bayesian estimations.
Also, when n and m are increase, the MSE of all estimators decreases.
b. Since ABB and MSE values of all estimators in state (s, k) = (3, 5) are less than
ABB and MSE of all estimators in state (s, k) = (2, 4), for both cases (c1, c2), we
conclude that three out of five component system reliability is more than the two out
of four component system.

4 Application with real data set
In this subsection, we present a data analysis of the strength data reported by Badar
and Priest (1982). This data, represent the strength measured in GPA for single carbon
fibers, and impregnated 1000-carbon fiber tows. Single fibers were tested under tension
at gauge lengths of 20mm (Data Set 1) and 10mm (Data Set 2).

Since for Data Set 1, the value of the Kolmogorov-Smirnov (K-S) statistic is 0.0815,
with a corresponding p-value of 0.9197, the data follows the IR distribution. Also, we
have for Data Set 2, the K-S statistic equal to 0.133, with a corresponding p-value of
0.8103. So, the data follows the IR distribution.

To compute the Bayesian, E-Bayesian, and hierarchical Bayesian estimations, since
we do not have any prior information, we assumed thatb = d = 0.001. For c1 = c2 = 3,
θ1 = 1.5, θ2 = 2.5, and for (s, k) = (2, 4), the Bayesian, E-Bayesian, and hierarchical
Bayesian estimations become 0.767789, 0.678907 and 0.876226, respectively, Also, for
(s, k) = (3, 5), the Bayesian, E-Bayesian, and hierarchical Bayesian estimations become
0.873342, 0.798765 and 0.945321, respectively. Because the value of the hierarchical
Bayesian estimation of reliability in a multicomponent stress-strength system is greater
than the value of the reliability estimation of other estimation methods in both the
cases of (s, k), therefore, the performance of the hierarchical Bayesian estimation of
Rs,k is better than that of Bayesian and E-Bayesian estimations. We can see, when
(s, k) = (3, 5), the value of the hierarchical Bayesian estimation of the Rs,k estimation is
greater than the value of the hierarchical Bayesian estimation of the Rs,k estimation in
the case (s, k) = (2, 4), we conclude that three out of five component system reliability
is more than the two out of four component system reliability.

5 Conclusions
In this study, Bayesian, E-Bayesian, and hierarchical Bayesian estimations of reliabil-
ity in a multicomponent stress-strength model, were obtained. We assume that the
underlying distribution for both stress and strength variables have IR distributions
with different scale parameters. By calculating the MSE and the average absolute bias
estimation, the Bayesian, E-Bayesian, and hierarchical Bayesian estimations of reli-
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ability in a multicomponent stress-strength model based on the IR distribution were
compared using Monte Carlo simulation and two real data sets. It has been shown that
the estimation of reliability by hierarchical Bayesian estimation has better efficiency.
Furthermore, it was shown that the reliability of the one out of three component sys-
tem is higher than the reliability of the one out of two component system for three
estimation methods.
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