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Abstract: Nonlinear regression models have widespread applications across diverse
scientific disciplines. Achieving precise fitting of the optimal nonlinear model is essen-
tial, taking into account the biases inherent in Bayesian optimal design. This study
introduces a Bayesian optimal design utilizing the Dirichlet process as a prior. The
Dirichlet process is a fundamental tool in exploring Nonparametric Bayesian infer-
ence, providing multiple well-suited representations. The research paper presents a
novel one-parameter model, termed the “unit-exponential distribution”, specifically
designed for the unit interval. Additionally, a representation is employed to approxi-
mate the D-optimality criterion, considering the Dirichlet process as a functional tool.
Through this approach, the aim is to identify a nonparametric Bayesian optimal design.
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1 Introduction
In the field of experimental design, optimal design pertains to a specific category of
designs categorized according to certain statistical criteria. It is widely recognized
that a well-structured experiment can significantly improve the precision of statisti-
cal analyses. Essentially, before gathering data for model parameter estimation, it is
advisable to select the most appropriate test that yields the maximum information.
This selection, termed experimental design, is crucial, particularly when there is lim-
ited information available for the data and when measurements are costly in terms of
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time and expenses. As a result, many researchers have devoted their efforts to tackle
the challenge of developing optimal designs for nonlinear regression models. Experi-
mental design plays a crucial role in various scientific research domains, including but
not limited to biomedicine and pharmacokinetics. Its application in these fields allows
researchers to conduct rigorous investigations and obtain valuable insights.

Optimal designs are pursued by employing optimality criteria, typically grounded in
the information matrix. Until 1959, research primarily concentrated on linear models,
where the models exhibited linearity concerning the parameters. However, in nonlin-
ear models, the introduction of unknown parameters added intricacies to the design
problem, given that the optimality criteria relied on these unknown parameters (Atkin-
son et al., 2007; Bürkner et al., 2019). To tackle this challenge, researchers proposed
various solutions, encompassing local optimal designs (Aminnejad and Jafari, 2017;
Chernoff, 1953; Dette et al., 2006; Ford and et al., 1992; Rodríguez-Torreblanca and
Rodríguez-Díaz, 2007), sequential optimal designs, minimax optimal designs, Bayesian
optimal designs (Parsa Maram and Jafari, 2016; Goudarzi and et al., 2019; Graßhoff
and et al., 2012; Kiefer, 1959; Kiefer and Wolfowitz, 1959), and pseudo-Bayesian designs
(Mukhopadhyay and Haines, 1995). Chernoff (1953) introduced the concept of local
optimality, which entails specifying fixed values for the unknown parameters and opti-
mizing a function of the information matrix to determine the design for these specified
parameter values.

The determination of unknown parameter values in local designs is typically derived
from prior studies or experiments conducted explicitly for this purpose. The efficacy of
local designs heavily hinges on the judicious selection of these parameter values. How-
ever, a notable challenge arises when the investigated problem lacks robustness con-
cerning weak parameter estimation. To address this, an alternative approach for local
optimal designs involves incorporating a prior distribution for the unknown parameters
rather than relying solely on an initial guess. In the Bayesian method, the initial step
is to encapsulate the available information in the form of a probability distribution for
the model parameter, known as the prior distribution. A Bayesian optimal design seeks
to maximize the relevant optimality criterion over this prior distribution. Nevertheless,
it is crucial to acknowledge that the choice of the prior distribution within the Bayesian
framework can be problematic and may potentially yield erroneous results. The selec-
tion of the prior distribution is subjective, relying on the researcher’s beliefs, and it
could influence the final outcome. Unfortunately, the Bayesian approach lacks a defini-
tive method for selecting the prior distribution. Numerous researchers have delved into
investigating the impact of the prior distribution on determining design points in vari-
ous types of optimal designs. For instance, Chaloner and Larntz (1989); Chaloner and
Duncan (1983); Burghaus and Dette (2014); Chaloner and Verdinelli (1955); Pronzato
and Walter (1985); Mukhopadhyay and Haines (1995); Dette and Neugebauer (1996,
1997); Fedorov and Hackl (2012); Fedorov and Leonov (2013); Firth and Hinde (1997)
have made significant contributions to this field. For additional insights into this sub-
ject, Chapter 18 of Atkinson et al.’s book (Atkinson et al., 2007) serves as a valuable
resource. Furthermore, in situations where there is insufficient evidence from prior
studies on the relevant topic, specifying an appropriate prior distribution becomes a
challenging task. In such instances, subjective or noninformative prior distributions
are employed, encompassing all available information pertaining to the uncertainty of
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the parameter values. For further details, refer to Burghaus and Dette (2014).
This research paper presents a unique one-parameter distribution known as the

unit-exponential (UE) distribution, explicitly tailored for the unit interval in Section
2. Subsequently, the introduced distribution is treated as a nonlinear regression model,
and its optimal designs are elucidated. To achieve this, Section 3 commences with dis-
cussions on optimal designs for nonlinear models, followed by the derivation of pertinent
relationships for our model. The paper concludes in Section 4, offering closing remarks.

2 The unit-exponential distribution
If Y follows the exponential distribution with the probability density function (pdf)
g(y) = θ exp(−θy), then employing the transformation X = Y

1+Y yields a new distri-
bution with support on the unit interval, where the cumulative distribution function
(cdf) and the pdf of the resultant distribution are given by

F (x | θ) = 1− exp(
−θx
1− x

), 0 < x < 1, θ > 0, (1)

f(x | θ) =
θ

(1− x)2
exp(

−θx
1− x

), 0 < x < 1, θ > 0. (2)

The hazard rate function (hrf) for this distribution is expressed as follows

h(x | θ) = f(x | θ)
1− F (x | θ)

=
θ

(1− x)2
, 0 < x < 1, θ > 0.

In Figure 1, the pdf and the hrf of this distribution are graphed for various values
of the parameter θ. According to this figure, it is evident that the hrf exhibits an
increasing trend within the interval 0 < x < 1. Moving forward, we will explore several
key statistical properties of the UE distribution.
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Figure 1: Plot of pdf (left) and hrf (right).

Next, we shall discuss several main statistical properties of the UE distribution.
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2.1 Moments
The k-th moment about the origin of the UE distribution is provided by the expression
(Bakouch et al., 2023):

µ′
k = E(XK) = K

∫ 1

0

xk−1 exp(
−θx
1− x

)dx, k = 1, 2, . . . ,

which can not be solved analytically. Various moments of UE distribution have been
shown in Table 1, for k = 1, 2, 3, 4 and solved using Maple software.

Table 1: Various Moments of UE distribution.
θ = 0.2 θ = 0.5 θ = 1 θ = 1.5 θ = 2 θ = 2.5

µ′
1 0.7013 0.5385 0.4036 0.3276 0.2773 0.2411
µ′
2 0.5429 0.3463 0.2109 0.1466 0.1093 0.0853
µ′
3 0.4388 0.2407 0.1237 0.0756 0.0507 0.0361
µ′
4 0.3639 0.1753 0.0777 0.0425 0.0260 0.0170

SD 0.2260 0.2372 0.2190 0.1979 0.1800 0.1648
CV 0.3222 0.4404 0.5426 0.6040 0.6491 0.6835
Sk −1.1762 −0.4816 −0.0162 0.2362 0.4148 0.5431
K 3.5924 2.2348 1.9617 2.1261 2.3359 2.4364

In this table, SD is the Standard Deviation and CV is the coefficient of variation of
new distribution.The skewness (Sk) and kurtosis (K) of the distribution are given by

skewness(Sk) =
µ′
3 − 3µ′

1µ
′
2 + 2µ

′3
1

(µ′
2 − µ

′2
1 )3/2

,

kurtosis(K) =
µ′
4 − 4µ′

1µ
′
3 + 6µ

′2
1 µ

′
2 − 3µ

′4
1

(µ′
2 − µ

′2
1 )2

.

Higher-order moments can be computed numerically through the use of software such
as MAPLE. As indicated in Table 1, the moment decreases with an increase in θ, while
skewness exhibits an increasing trend with rising θ. On the other hand, the kurtosis
does not demonstrate a specific trend.

2.2 Incomplete moments
The kth incomplete moment of the UE distribution is expressed as per the formula
provided by Mazucheli et al. (2019)

Tk(t) = E[Xk|x < t] =

∫ t

0

xk exp(
−θx
1− x

)dx, k = 1, 2, . . . ,

which can not be solved analytically. In particular, for k = 1, 2 and by considering the
change of variables, u = (

θx

1− x
), we obtain

T1(t) = exp(θ)(−(exp(−(θ +
θt

(1− t)
))− exp(−θ)) + θ(Ei(1,

θt

(1− t)
)− Ei(1, θ))),
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where
Ei(a, z) =

∫ ∞

1

z−a exp(−yz)dy.

Similarly, the T2(t) is obtained.

2.3 Mean deviation
As pointed out, like study of Ghitany et al. (2008), the amount of scattering in a
population is measured to some extent by the totality of deviations from the mean and
the median. These are known as the mean deviation about the mean and the mean
deviation about the median, defined as (Mazucheli et al., 2019)

δ1(X) =

∫ ∞

0

|x− µ|f(x)dx = 2µF (µ)− 2I(µ),

that

I(µ) =

∫ µ

0

xf(x)dx,

δ2(X) =

∫ ∞

0

|x−M |f(x)dx = µ− 2I(M),

where µ = E(X) and M =Median(X). So we have

δ1(X) = 2µF (µ)− 2I(µ) = 2µ(1− exp(
−θµ
1− µ

))− 2

∫ µ

0

xf(x)dx,

δ2(X) = µ− 2I(M) = µ− 2

∫ M

0

xf(x)dx,

2.4 Quantile function
Let X be a unit-exponential random variable with cdf (1). The quantile functionQ(p) =

F−1(p) can be written as 1− exp(−θQ
1−Q ) = p, then we have Q(p | θ) = log(1− p)

log(1− p)− θ
.

2.5 Maximum likelihood estimator
In this section, we will explore the estimation of the parameter θ for the UE distribution
using both maximum likelihood methodology and the method of moments. Suppose
X1, . . . , Xn form a random sample from the UE distribution with the pdf given by (2).
The log-likelihood function of θ can then be expressed as:

ℓ(θ | x) ∝ n log θ +

n∑
i=1

log
1

(1− xi)2
− θ

n∑
i=1

xi
(1− xi)

. (3)

The maximum likelihood estimate of θ is derived by taking the derivative of (3) with
respect to the parameter. This yields θ̂ = n

u(x)
, where u(x) =

n∑
i=1

xi
(1− xi)

.
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2.6 Simulation study
In this section, a Monte Carlo simulation is conducted to assess and compare the finite
sample behavior of the maximum likelihood estimators for the parameterθ. Samples
of sizes n = 50, 100, 150 and 200 are generated, considering various values of the pa-
rameter θ. To simulate observations from the UE distribution, Y is generated from
an exponential distribution, and then the transformation X = Y/(1 + Y ) is applied.
The simulation experiment is repeated N = 1000 times. The results for bias and Mean
Squared Error (MSE) are presented in Table 2 indicate a positive bias in the MLE of
the parameter θ The results are consistently stable and, notably, closely approximate
the actual values for this sample size. Furthermore, the MSE decreases with an increase
in the sample size.

Table 2: Estimated bias ( mean-squared error) of θ by maximum likelihood method.
θ n Bias MSE θ n Bias MSE
0.1 50 0.0944 0.7092 0.5 50 0.5502 0.4258

100 0.0362 0.0753 0.5 100 0.4779 0.2737
150 0.0155 0.0242 0.5 150 0.4767 0.2607
200 0.0139 0.0005 0.5 200 0.4556 0.1374

2 50 0.9485 1.0271 5 50 0.5863 0.6224
100 0.8950 0.9555 5 100 0.4167 0.3036
150 0.8835 0.8453 5 150 0.3466 0.2020
200 0.8680 0.8022 5 200 0.2902 0.1570

2.7 Applications
In this section, we outline the applications of the newly proposed distribution and
demonstrate that the UE distribution offers a superior fit compared to other models
for the given dataset. All computations are executed using R and MATLAB softwares.
The example focuses on the monthly water capacity data sourced from the Shasta
reservoir in California, USA, spanning from February 1991 to 2010, as retrieved from
http://cdec.water.ca.gov/reservoirmap.html, in line with Mukhopadhyay and Haines
(1995). A crucial criterion for determining the appropriateness of a particular dis-
tribution for a dataset is the empirical hazard function of the data. In this context,
we employ the scaled Total Time on Test (TTT) function to identify the type of hrf
exhibited by the data and subsequently select the most suitable distribution (Aarset,
1987). The TTT plot for the dataset is depicted in Figure 2. Finally, to distinguish
between the unit exponential, unit-Rayleigh, unit-Weibull, and unit-BXII distribution,
we compute −2 log(L), the Akaike Information Criterion (AIC), and the Bayesian In-
formation Criterion (BIC). The results are summarized in Table 3. The optimal model
corresponds to lower −2 log(L), and BIC values. The values of these measures suggest
that the UE distribution is a robust contender against other competitive distributions
and, moreover, stands out as the best fit among them.

Figure 3 illustrates the histogram of the dataset alongside the fitted density function
and plots of the empirical and estimated pdf for these fitted distributions. The figure
provides evidence supporting the conclusion that the UE distribution is a suitable
model for fitting the considered dataset.
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Figure 2: TTT plot for the data set.

Table 3: Parameter estimates, log-likelihood values and goodness-of-fit measures for
the data set.

model α θ β −2 log(L) AIC BIC
Unit-exponential − 0.29710 − −22.5453 −20.5453 −19.5495
Unit-Rayleigh − − 5.215272 −17.23051 −15.2305 −12.2347
Unit-Weibull 4.207084 − 1.57037 −21.9138 −17.9138 −15.9224
Unit-BXII 5.856231 − 1.76528 −23.4884 −19.4884 −17.4969
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Figure 3: The plots of the fitted pdfs of the considered distributions as well as the histograms for
the data set.

3 Optimal design for nonlinear models
In the realm of nonlinear experimental design, a common scenario arises where in the
relationship between the response variable y and the independent variable x is given by
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the equation y = η(x,θ) + ϵ where x ∈ χ ⊆ R and y is a response variable and θ ∈ Θ
is the unknown parameter vector and ϵ is a normally distributed residual value with
mean 0 and known variance σ2 > 0. For simplicity, we assume σ2 = 1 in this problem.
If η(x,θ) is differentiable with respect to θ then, the information matrix M(ξ,θ) at a
given point x can be represented as follows (Goudarzi and et al., 2019)

I(ξ, θ) =
∂

∂θ
η(x,θ)

∂

∂θT
η(x,θ).

Several optimality criteria are employed to attain the optimal design, including D-
optimality and A-optimality. These criteria are functions of the information matrix
and can be expressed as follows

ΨD(ξ, θ) = − log(det(M(ξ, θ))),ΨA(ξ,θ) = tr(M−1(ξ;θ)),

where ξ denotes a design with two components; the first component represents specific
values from the design space χ and the second component corresponds to the weights
assigned to these values, so that design ξ can be defined as follows

ξ =
{
x1 x2 . . . xℓ
w1 w2 . . . wℓ

}
∈ Ξ,

where Ξ = {ξ | 0 ≤ wj ≤ 1;
ℓ∑

j=1

wj = 1, x ∈ χ}, (Kiefer, 1974).

When considering a discrete probability measure ξ with finite support, the infor-
mation function of ξ can be expressed as follows (Atkinson et al., 2007)

M(ξ, θ) =

ℓ∑
j=1

wjI(xj ,θ).

Because of the dependence of the information matrix M(ξ,θ) to the unknown pa-
rameter θ, one approach to address this issue is to employ the Bayesian method and
incorporate a prior distribution of the parameter vector. The Bayesian D-optimality
criterion can be formulated as follows

ΨΠ(ξ) = E(ψ(ξ;θ)) =

∫
Θ

ψ(ξ;θ)dΠ(θ) =

∫
Θ

− log(det(M(ξ,θ)))dΠ(θ), (4)

where Π represents the prior distribution for θ and the Bayesian D-optimal design is
attained by minimizing (4). According to Dette and Neugebauer (1996), in the general
case of optimal designs which can include designs with two and more points, if the
support of the prior distribution has n points, then the maximum number of Bayesian
optimal design points is determined by n

p(p+1)
2 , where p is the model parameter. Hence,

in the specific scenario of nonlinear models with one parameter (p = 1), this implies
that the support of the Bayesian optimal design does not contain more points than the
support of the prior distribution.

In certain situations, it can be challenging for the experimenter to specify a prior
distribution on the Θ parameter space. In such cases, an alternative approach is to
consider an unknown prior distribution Π for the parameter θ. In this condition, Π
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is treated as a parameter itself. Consequently, (4) becomes a random function, and it
becomes necessary to determine its distribution or approximation. From a Bayesian
perspective, we construct a prior distribution on the space of all distribution functions
to address this issue. Ferguson (1973) introduced the concept of the Dirichlet process
(DP) in this context, that in the section 3.1.1 an overview of the DP will be provided
in section 3.1.1.

3.1 Nonparametric Bayesian D-optimal design
In this section, we introduce the nonparametric Bayesian optimal design. In the non-
parametric Bayesian framework, it is assumed that θ | P ∼ P , where P is a random
probability distribution and P ∼ Π. The general method of construction a random
measure involves starting with the stochastic processes. Ferguson (1973) formulated
the requirements that must be imposed on a prior distribution and proposed a class
of prior distributions, named DPs. One of the main argument for using the Dirichlet
distribution in practical applications is based on the fact that this distribution serves as
good approximation of many parametric probability distributions. Below we provide
the definition of the DP.

3.1.1 Dirichlet process

To establish a random distribution G distributed according to a DP, its marginal
distributions must follow a Dirichlet distribution. Specifically, let H be a distribution
over Θ and α be a positive real number. For any finite measurable partition A1, . . . , Ar

of Θ, the vector (G(A1), . . . , G(Ar)) is random since G is random. We say G is a DP
distributed with base distribution H and concentration parameter α, written G ∼
DP(α,H) (Ferguson, 1973), if the following conditions hold

(G(A1), . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)), (5)

for every finite measurable partition A1, . . . , Ar of Θ.
The parameters H and α play intuitive roles in the definition of the DP. The base

distribution H represents the mean of the DP, such that for any measurable set A⊂Θ,
we have E[G(A)] = H(A). On the other hand, the concentration parameter α can
be viewed as an inverse variance: V [G(A)] = H(A)(1 −H(A))/(α + 1). The larger α
is, the smaller the variance, and the DP will concentrate more of its mass around the
mean. The concentration parameter is also referred the strength parameter, referring
to the strength of the prior when using the DP as a nonparametric prior in Bayesian
nonparametric models. It can be interpreted as the amount of mass or sample size
associated with the observations. It is worth noting that α and H only appear as their
product in the definition of the DP (5). Consequently, some authors treat H = α
H, as the same as the single (positive measure) parameter of the DP, writing DP(H)
instead of DP(α,H). This parameterization can be notationally convenient, but loses
the distinct roles α and H play in describing the DP.

Consequently, when α approaches infinity (α→ ∞), G(A) approaches H(A) for any
measurable set A, indicating weak or pointwise convergence of G to H. However, it is
important to note that this does not imply a direct convergence of G to H as a whole.
In fact, as we will explore later, samples drawn from a DP will typically be discrete
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distributions with probability one, even if the base distribution H is smooth. Therefore,
G and H may not be absolutely continuous with respect to each other. Despite this,
some authors still utilize the DP as a nonparametric extension of a parametric model
represented by H. However, if the desire is to maintain smoothness, it is possible to
extend the DP by convolving G with kernels, resulting in a random distribution with
a density function.

An alternative definition of the DP is proposed by Ferguson (1973) that defined a
random probability measure which is a DP on (Θ, B(Θ)), as

P (.) =

∞∑
i=1

piδθi(.),

where θi(i > 1) is a sequence of i.i.d. random variables with common distribution Q,
δθi represents a probability measure that is degenerate at θ that δθi = 1 if θi ∈ A and
0 otherwise, and pi

,s are the random weights satisfying pi ̸= 0 and
∞∑
i=1

pi = 1. The

random distribution P is discrete with probability one. Several authors have proposed
alternative series representations of the DP. Bondesson (1982); Sethuraman (1994);
Zarepour and Al Labadi (2012) are among those who have contributed to this area.
In the upcoming section, we will discuss the nonparametric Bayesian D-optimal design
for the UE model.

3.1.2 Nonparametric Bayesian D-optimal design for UE model

Now, let’s consider the following regression model

E(y|x) = η(x,θ) =
θ

(1− x)2
exp(

−θx
1− x

), 0 < x < 1, θ > 0. (6)

Therefore, the Bayesian D-optimality criterion, denoted as ΨΠ(ξ) can be expressed
according to our model as follows (Goudarzi and et al., 2019)

ΨΠ(ξ) = E(ψ(ξ;θ)) =

∫
Θ

− log(

ℓ∑
j=1

wj [exp(
−θxj
1− xj

)(
1

(1− xj)2
+

θxj
(1− xj)3

)]2)dΠ(θ),

(7)
where Π is the prior distribution for θ. The Bayesian D-optimal design is attained by
minimizing (7). In the nonparametric Bayesian framework, we consider P ∼ DP(α, P0)

and its collective representation as P (.) =
∞∑
i=1

piδθi(.). In this context, the optimality

criterion can be expressed as follows

ΨΠ(ξ) =

∞∑
i=1

pi(− log(

ℓ∑
j=1

wj [exp(
−θixj
1− xj

)(
1

(1− xj)2
+

θixj
(1− xj)3

)]2)). (8)

Chernoff (1953) demonstrated that when searching for a local optimal design, there
exists an optimal design where all the mass is concentrated at a single point within
the design supports. Caratheodory’s theorem (Atkinson et al., 2007) also confirms the
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existence of a one-point optimal design. However, when employing the Bayesian op-
timality criterion, a more complex situation arises. Brice (2006) showed that with a
uniform prior distribution, as the support of the prior distribution increases, the num-
ber of optimal design points for the single-parameter model also increases. Challoner
(1983) suggested that if the researcher seeks to achieve a one-point optimal design, it
is advisable to consider a small support for the uniform prior distribution. The same
principle applies to nonparametric Bayesian designs. In this scenario, assuming a uni-
form distribution over the interval [1, B] (we considered the values of 10, 50, 100 and
300 for B in this study) as the basic distribution, the one-point optimal design can be
achieved.

Equation (7) represents a stochastic function of the DP. According to Ferguson’s
definition of the DP, the calculation of (8) is not straightforward directly. To address
this challenge and obtain an approximation of the optimal nonparametric Bayesian
criterion, methods such as the stick-breaking process is employed. Sethuraman (1994)
introduced this method as a significant approach for generating realizations of the DP,
that we used this method.

In this section, we employ a uniform distribution as the base measure in the DP
and obtain the results by using a nonlinear optimization programing R package Rsolnp.
We consider uniform distribution on the interval [1, B] as the base measure in DP, that
is, uniform distribution is assumed as an initial guess for distribution of θ. To better
understanding of the effect of the α parameter, we tabulate the results for four different
values of α = 1, 5, 10, 50, in Table 4. We also fixed ϵ = 10−10. Without loss of generality,
we consider a bounded design space χ = [0, 1].

Table 4 represents the results when the concentration parameter and uncertainty
in the base measure increase.

According to the results, as the value of α increases, the support points in two-point
design do not change significantly. The weight of the minimum point increases rapidly
and the smallest point will have the most weight that this weight almost increases or
remains fixed by increasing the concentration parameter. In addition, in the range
under investigation, the results show that we do not have a three-point design for all
parameter spaces [1, B] and in fact, it converts to the design by less points.

4 Discussion and conclusions
Nonlinear regression models are widely used in various scientific fields and the Bayesian
method is commonly employed to obtain optimal designs in such models. However,
one of the challenges in the Bayesian framework is the subjective selection of the prior
distribution, which can potentially lead to incorrect results. The choice of the prior
distribution is often based on the researcher’s beliefs, and it strongly influences the
final outcome. Unfortunately, the Bayesian approach lacks a systematic method for
selecting the prior distribution. To overcome these limitations and reduce reliance on
restrictive parametric assumptions, nonparametric Bayesian methods are pursued.

In this study, we consider the prior distribution as an unknown parameter and
utilize the DP to derive nonparametric Bayesian D-optimal designs. Specifically, we
focus on a nonlinear model with one parameter, namely the unit-exponential distribu-
tion. We investigate the Bayesian D-optimal design for the unit exponential regression
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Table 4: Nonparametric Bayesian D-optimal designs with uniform base distribution.
α Prior distribution Design Two-point
1 U [1, 10] x 0.08439 0.59184

w 0.83337 0.16663
U [1, 50] x 0.00241 0.28782

w 0.99840 0.00160
U [1, 100] x 0.00081 0.29072

w 0.99685 0.00315
U [1, 300] x 0.00012 0.30016

w 0.99793 0.00207
5 U [1, 10] x 0.07819 0.11187

w 0.70592 0.29408
U [1, 50] x 0.00247 0.28584

w 0.99884 0.00116
U [1, 100] x 0.00066 0.29195

w 0.99980 0.00020
U [1, 300] x 0.00007 0.29538

w 0.99930 0.00070
10 U [1, 10] x 0.07369 0.08374

w 0.71886 0.28114
U [1, 50] x 0.00248 0.28360

w 0.99716 0.00284
U [1, 100] x 0.00066 0.28980

w 0.99958 0.00042
U [1, 300] x 0.00007 0.29799

w 0.99917 0.00083
50 U [1, 10] x 0.07456 0.39371

w 0.82952 0.17048
U [1, 50] x 0.00159 0.08261

w 0.99993 0.00007
U [1, 100] x 0.00062 0.19091

w 0.99978 0.00022
U [1, 300] x 0.00006 0.30198

w 0.99966 0.00034

model (6) using a uniform prior distribution and examining various parameter values.
By adopting a nonparametric Bayesian approach and utilizing the DP, we aim to ad-
dress the challenges associated with selecting the prior distribution in Bayesian optimal
design construction. This allows us to account for uncertainty and mitigate the impact
of restrictive parametric assumptions providing more flexible and robust designs for
nonlinear regression models.

In this investigation, our emphasis is on employing the uniform distribution as the
base distribution in the DP. To provide a comprehensive understanding the influence of
the concentration parameter α, we present the results in tables for four different values
of α = 1, 5, 10, 50. These tables provide valuable insights into the nonparametric
Bayesian optimal designs and show the weights and support points. Through the
analysis of results for different values of α, we can better understand the impact of this
parameter on the design outcomes. This approach allows us to explore and evaluate
the performance of the nonparametric Bayesian optimal designs across different levels
of the concentration parameter α.

In the investigated range, the results reveal interesting findings. For all parameter
values, the absence of three-point designs is notable. In fact, as uncertainty in the
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base measure increases, another optimal point is obtained with a very small weight,
forming a design where the two other point carry the highest weights. These designs
categorized as two-point designs, given that the weight of the additional point becomes
negligible.

As the uncertainty in the base measure and the concentration parameter in the
DP increase, the support points in the two-point designs do not undergo significant
changes. The weight of the smallest point increases rapidly, and it becomes the point
with the highest weight. This weight tends to either increase or remain relatively stable
with an increase in the concentration parameter.

It is crucial to highlight that the approach employed in this study holds applicability
to other optimality criteria and diverse models featuring two or more parameters. For
instance, extending nonparametric Bayesian optimal designs to encompass A- or E-
optimality criteria for the discussed nonlinear model, in conjunction with a DP prior,
presents avenues for future research. We anticipate presenting new findings in this
domain in the near future.
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