شناسایی مسیرها و منابع رخدادهای گردوغبار در استان یزد با استفاده از مدل HYSPLIT و دادههای سنجش از دور | ||
خشک بوم | ||
دوره 13، شماره 2، مهر 1402، صفحه 35-52 اصل مقاله (1.95 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.29252/aridbiom.2024.20805.1969 | ||
نویسنده | ||
محمدرضا شیرغلامی* | ||
دکترای آب و هواشناسی، رییس گروه توسعه هواشناسی کاربردی اداره کل هواشناسی استان یزد، یزد، ایران | ||
چکیده | ||
یکی از پدیدههای مخرب جوی که مناطق دارای اقلیم خشک تا فراخشک مانند استان یزد را بهشدت تحت تأثیر خود قرار میدهد، طوفان گردوغبار است. این مخاطره جوی، زیانهای زیادی را بهدنبال دارد که از جمله آنها میتوان به مشکلات محیط زیستی، اجتماعی-اقتصادی، سلامت انسان، اقلیم و ریزاقلیم اشاره کرد. پایش مکانی و زمانی دقیق گردوغبار میتواند به شناسایی مسیر و کانون این پدیده کمک کرده و نقشی حیاتی در مدیریت و کاهش خسارات احتمالی طوفان ایفا کند. در پژوهش حاضر، سه نمونه از طوفانهای گردوغبار رخ داده در سال 2022 میلادی در استان یزد مورد واکاوی قرار گرفت. زمانی که دید افقی کمتر از 5/3 کیلومتر و یکی از کدهای 06 تا 09و یا 30 تا 35 گزارش شده باشد، یک طوفان گردوغبار مؤثر در نظر گرفته میشود. برای شناسایی مسیرهای انتقال توده گردوغبار به استان یزد، از مدل لاگرانژی HYSPLIT استفاده شد. نتایج حاصل از این مدل نشان داد که تودههای گردوغبار برای رسیدن به استان یزد سه مسیر اصلی جنوبغربی، غربی-شمالغربی و شمالشرقی را طی میکنند. برای بررسی توزیع مکانی گردوغبار و نیز شناسایی دقیقتر منابع گردوغبار از دادههای عمق نوری هواویزها مبتنی بر سنجش از دور، فرآورده MOD04/ MYD04_L2 و همچنین فرآورده MOD08_D3 استفاده شد. تصاویر بهدست آمده از سنجنده مودیس، کانونهای گردوغبار خارجی را بیابانهای بزرگ عراق، سوریه، شبه جزیره عربستان و صحرای ترکمنستان و منشاء داخلی گردوغبار انتقالی را مناطق بیابانی واقع در استانهای سمنان و اصفهان در شمال شرق استان یزد معرفی مینمایند. ضمن این که تالاب گاوخونی در شمالغرب منطقه مورد مطالعه بهعنوان تشدیدکننده گردوغبار انتقالی از مرزهای غربی کشور عمل میکند. همچنین نتایج بهدست آمده از دادههای ماهوارهای و مدل HYSPLIT با یگدیگر همخوانی دارند. | ||
کلیدواژهها | ||
کانون گردوغبار؛ دید افقی؛ عمق نوری هواویز؛ سنجنده مودیس؛ توزیع مکانی | ||
عنوان مقاله [English] | ||
Identifying trajectories and sources of dust events in Yazd province using HYSPLIT model and remote sensing data | ||
نویسندگان [English] | ||
Mohammad Reza Shirgholami | ||
Ph.D. of Climatology, Head of Applied Meteorology Development Group, Yazd Meteorological Office, Yazd, Iran | ||
چکیده [English] | ||
Dust storm is one of the destructive weather phenomena that strongly affects regions with arid and semiarid climates like Yazd province. This phenomenon leads to many losses, including environmental, socio-economic, human health, climate and microclimate problems. Accurate spatial and temporal monitoring of dust can help identify the trajectories and sources of this atmospheric hazard and play a vital role in management and reduction of possible damages of storm. In the present study, three examples of dust storms that occurred in 2022 in Yazd province were analyzed. When the visibility is less than 3.5 km and one of the codes 06 to 09 or 30 to 35 is reported, it is considered as an effective dust storm. The lagrangian HYSPLIT model was used to identify the trajectories of dust transfer to Yazd province. The results of this model indicate that dust masses travel three main pathways to reach Yazd province: southwest, west-northwest, and northeast. In order to investigate the spatial distribution of dust and also to identify dust sources more accurately, the aerosol optical depth data based on remote sensing, the MOD04/MYD04_L2 product and also the MOD08_D3 product, were used. These images showed that the external sources of dust are the large deserts of Iraq, Syria, the Arabian Peninsula, and the desert of Turkmenistan, and the internal source of dust is the desert areas located in the provinces of Semnan, Isfahan in the northeast of Yazd province. In addition, the Gavkhoni wetland in the northwest of the study area acts as an intensifier of the dust transferred from the western borders of the country. Also, the results obtained from the satellite data and the HYSPLIT model are consistent with each other. | ||
کلیدواژهها [English] | ||
Dust Sources, Visibility, Aerosol Optical Depth, MODIS, Spatial Distribution | ||
مراجع | ||
[1]. Alam, K., Trautmann, T., Blaschke, T., & Subhan, F. (2014). Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote sensing of environment, 143, 216-227. doi: 10.1016/j.rse.2013.12.021
[2]. Alhebsi, K. (2020). Spatio-temporal Variability of Aerosol Optical Depth in the UAE Using MODIS Data [Doctoral dissertation, George Mason University].
[3]. Ansari, A., & Jamshidi, R. (2018). Identification of sources and tracking dust storm routes entering from domestic sources to Arak metropolitan using HYSPLIT model. Environmental Sciences, 16(1), 101-110. [in Farsi]
[4]. Ashrafi, K., Shafiepour-Motlagh, M., Aslemand, A., & Ghader, S. (2014). Dust storm simulation over Iran using HYSPLIT. Journal of environmental health science and engineering, 12, 1-9. doi: 10.1186/2052-336X-12-9
[5]. Attiya, A. A., & Jones, B. G. (2022). An extensive dust storm impact on air quality on 22 November 2018 in Sydney, Australia, using satellite remote sensing and ground data. Environmental Monitoring and Assessment, 194(6), 432. doi: 10.1007/s10661-022-10080-1
[6]. Awadh, S. M. (2023). Impact of North African sand and dust storms on the Middle East using Iraq as an example: Causes, sources, and mitigation. Atmosphere, 14(1), 180. doi: 10.3390/atmos14010180
[7]. Crosbie, E., Sorooshian, A., Monfared, N. A., Shingler, T., & Esmaili, O. (2014). A multi-year aerosol characterization for the greater Tehran area using satellite, surface, and modeling data. Atmosphere, 5(2), 178-197. doi: 10.3390/atmos5020178
[8]. de Graaf, M. (2006). Remote Sensing of UV-absorbing aerosols using space-borne spectrometers [Doctoral dissertation, Vrije Universiteit Amsterdam, Amsterdam].
[9]. Deng, X., Shi, C., Wu, B., Chen, Z., Nie, S., He, D., & Zhang, H. (2012). Analysis of aerosol characteristics and their relationships with meteorological parameters over Anhui province in China. Atmospheric research, 109, 52-63. doi: 10.1016/j.atmosres.2012.02.011
[10]. Draxler, R. R., & Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories. Australian meteorological magazine, 47(4), 295-308.
[11]. Francis, D., Fonseca, R., Nelli, N., Bozkurt, D., Cuesta, J., & Bosc, E. (2023). On the Middle East's severe dust storms in spring 2022: Triggers and impacts. Atmospheric Environment, 296, 119539. doi: 10.1016/j.atmosenv.2022.119539
[12]. Furman, H. K. H. (2003). Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor and Built Environment, 12(6), 419-426. doi: 10.1177/1420326X03037110
[13]. Goel, A., & Bhatt, R. (2012). Causes and consequences of Global Warming. International Journal of Life Sciences Biotechnology and Pharma Research, 1(1), 27-31.
[14]. Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature climate change, 6(2), 166-171. https://doi.org/10.1038/nclimate2837
[15]. Iraji, F., Memarian, M. H., Joghataei, M., & Malamiri, H. R. G. (2021). Determining the source of dust storms with use of coupling WRF and HYSPLIT models: A case study of Yazd province in central desert of Iran. Dynamics of Atmospheres and Oceans, 93, 101197. doi: 10.1016/j.dynatmoce.2020.101197
[16]. Jafari, M., Zehtabian, G., Ahmadi, H., Mesbahzadeh, T., & Norouzi, A. A. (2019). Detection of dust storm paths using numerical models and satellite images (case study: Isfahan province). Iranian Journal of Range and Desert Research, 26(1). doi: 10.22092/ijrdr.2019.119324 [in Farsi]
[17]. Jafari, R., & Malekian, M. (2015). Comparison and evaluation of dust detection algorithms using MODIS Aqua/Terra Level 1B data and MODIS/OMI dust products in the Middle East. International Journal of Remote Sensing, 36(2), 597-617. doi: 10.1080/01431161.2014.999880
[18]. Jebali, A., Zare, M., Ekhtesasi, M. R., & jafari, R. (2020). Investigating of Change Extent of Horizontal Visibility in Regions Affected by Dust events in Yazd Province. Desert Management, 8(15), 21-36. doi: 10.22034/JDMAL.2020.44927 [in Farsi]
[19]. Jebali, A., Zare, M., Ekhtesasi, M. R., & Jafari, R. (2022). Performance Evaluation of Detector Algorithms of Dust Storms in Arid Lands (Case Study: Yazd Province). Desert Ecosystem Engineering, 8(23), 85-105. doi: 10.22052/deej.2018.7.23.59 [in Farsi]
[20]. Jooybari, S. A., Peyrowan, H., Rezaee, P., & Gholami, H. (2022). Evaluation of pollution indices, health hazards and source identification of heavy metal in dust particles and storm trajectory simulation using HYSPLIT model (Case study: Hendijan center dust, southwest of Iran). Environmental Monitoring and Assessment, 194(2), 107. doi: 10.1007/s10661-022-09760-9
[21]. Khoshsima, M., Bidokhti, A. A., & Ahmadi-Givi, F. (2013). Evaluation of aerosol optical depth using visibility and remote sensing data in urban and semi urban areas in Iran. Journal of the Earth and Space Physics, 39(1), 163-174. doi: 10.22059/jesphys.2013.31953 [in Farsi]
[22]. Knippertz, P., & Todd, M. C. (2012). Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. Reviews of Geophysics, 50 , RG1007. doi: 10.1029/2011RG000362
[23]. Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. (2007). Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres, 112(D13), 1-21. doi: 10.1029/2006JD007815
[24]. Liang, J., Zhang, L., Wang, Y., Cao, X., Zhang, Q., Wang, H., & Zhang, B. (2014). Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau, China. Journal of Geophysical Research: Atmospheres, 119(10), 6009-6021. doi: 10.1002/2014JD021510
[25]. Liu, M., Westphal, D. L., Walker, A. L., Holt, T. R., Richardson, K. A., & Miller, S. D. (2007). COAMPS real-time dust storm forecasting during Operation Iraqi Freedom. Weather and forecasting, 22(1), 192-206. doi: 10.1175/WAF971.1
[26]. Middleton, N. (2019). Variability and trends in dust storm frequency on decadal timescales: Climatic drivers and human impacts. Geosciences, 9(6), 261. doi: 10.3390/geosciences9060261
[27]. Middleton, N., Kashani, S. S., Attarchi, S., Rahnama, M., & Mosalman, S. T. (2021). Synoptic causes and socio-economic consequences of a severe dust storm in the Middle East. Atmosphere, 12(11), 1435. doi: 10.3390/atmos12111435
[28]. Mohammadpour Penchah, M., Memarian, M. H., & Mirrokni, S. M. (2015). Modeling and Analysis of Dust Storms of Yazd Province Using Numerical Models. Journal of Geography and Environmental Hazards, 3(4), 67-83. doi: 10.22067/geo.v3i4.34323 [in Farsi]
[29]. Namdari, S., Karimi, N., Sorooshian, A., Mohammadi, G., & Sehatkashani, S. (2018). Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmospheric environment, 173, 265-276. doi: 10.1016/j.atmosenv.2017.11.016
[30]. Namdari, S., Valizade, K. K., Rasuly, A. A., & Sari Sarraf, B. (2016). Spatio-temporal analysis of MODIS AOD over western part of Iran. Arabian Journal of Geosciences, 9(3), 1-11. doi: 10.1007/s12517-015-2029-7
[31]. Nowjavan, M. R., & Hashemi, M. (2013). Geomorphological Disparity of Kavir Landscaps (Case stady: Yazd Province). Geography and Environmental Planning, 24(2), 141-152. [in Farsi]
[32]. Omidvar, K., Dehghan, M., & Khosravi, Y. (2022). Assessment of relationship between aerosol optical depth (AOD) index, wind speed, and visibility in dust storms using genetic algorithm in central Iran (case study: Yazd Province). Air Quality, Atmosphere & Health, 15(10), 1745-1753. doi: 10.1007/s11869-022-01214-y
[33]. Papi, R., Kakroodi, A. A., Soleimani, M., Karami, L., Amiri, F., & Alavipanah, S. K. (2022). Identifying sand and dust storm sources using spatial-temporal analysis of remote sensing data in Central Iran. Ecological Informatics, 70, 101724. doi: 10.1016/j.ecoinf.2022.101724
[34]. Qor‐el‐aine, A., Beres, A., & Geczi, G. (2022). Dust storm simulation over the Sahara Desert (Moroccan and Mauritanian regions) using HYSPLIT. Atmospheric Science Letters, 23(4), e1076. doi: 10.1002/asl.1076
[35]. Rolph, G., Stein, A., & Stunder, B. (2017). Real-time environmental applications and display system: READY. Environmental Modelling & Software, 95, 210-228. doi: 10.1016/j.envsoft.2017.06.025
[36]. Shirgholami, M., & Masoodian, S. A. (2022). Assessment of spatial and temporal variations of land surface temperature (LST) due to elevation changes in Yazd Province, Iran. Arabian Journal of Geosciences, 15(16), 1372. doi: 10.1007/s12517-022-09943-1
[37]. Solomos, S., Ansmann, A., Mamouri, R. E., Binietoglou, I., Patlakas, P., Marinou, E., & Amiridis, V. (2017). Remote sensing and modelling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in September 2015. Atmospheric Chemistry and Physics, 17(6), 4063-4079. doi: 10.5194/acp-17-4063-2017, 2017.
[38]. Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059-2077. doi: 10.1175/BAMS-D-14-00110.1
[39]. Tian, X., Tang, C., Wu, X., Yang, J., Zhao, F., & Liu, D. (2023). The global spatial-temporal distribution and EOF analysis of AOD based on MODIS data during 2003–2021. Atmospheric Environment, 302, 119722. doi: 10.1016/j.atmosenv.2023.119722
[40]. Vancutsem, C., Ceccato, P., Dinku, T., & Connor, S. J. (2010). Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2), 449-465. doi: 10.1016/j.rse.2009.10.002
[41]. Wan, Z., Wang, P., & Li, X. (2004). Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. International journal of remote sensing, 25(1), 61-72. doi: 10.1080/0143116031000115328
[42]. Wu, Y., Wen, B., Li, S., & Guo, Y. (2021). Sand and dust storms in Asia: a call for global cooperation on climate change. The Lancet Planetary Health, 5(6), e329-e330. doi: 10.1016/S2542-5196(21)00082-6
[43]. Xiong, X., Sun, J., Wu, A., Chiang, K. F., Esposito, J., & Barnes, W. (2005, October). Terra and Aqua MODIS calibration algorithms and uncertainty analysis. In Sensors, Systems, and Next-Generation Satellites IX, Proceedings of the SPIE, 5978, 255-264. doi: 10.1117/12.627631 | ||
آمار تعداد مشاهده مقاله: 394 تعداد دریافت فایل اصل مقاله: 181 |