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Abstract: In the real world, we may come across with zero-inflated or zero-deflated
count data that have a very short-run autocorrelation. Integer-valued moving av-
erage processes are suitable for modeling these data. In this paper, a non-negative
integer-valued moving average process of the first order with zero-modified geometric
innovations is introduced. This model is called zero-modified geometric INMA(1) pro-
cess which contains geometric INMA(1) process as a particular case. Some statistical
properties of the process are obtained. The parameters of the model are estimated by
the Yule-Walker method. Then, using the simulation study, we evaluate the perfor-
mance of this estimators. Finally, the model is applied to two examples of real time
series of the monthly number of rubella cases and the annually number of earthquakes
magnitude 8.0 to 9.9. Then, we exhibit the ability of the model for fitting and predict-
ing count data with excess and deficit of zeros.

Keywords: INMA(1) process; Zero-deflated; Zero-inflated; Zero-modified geometric
distribution.
Mathematics Subject Classification (2010): 62M10.

1 Introduction
In recent decades, the integer-valued time series is used in different fields, such as
economic, insurance, medicine, ecology and biology. Sometimes, in real life, there are
situations where the zeros appear in the count data with a greater or a lesser tendency,
such as the daily number of hospitalized patients in a hospital and the annually number
of earthquakes in the world. Count data with this feature is also known as zero-inflation
or zero-deflation.
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One of the methods for analyzing and modeling count data with inflation or defla-
tion of zeros are zero modified count time series models. Some researchers introduced
zero modified INAR models, such as Jazi et al. (2012), Barreto-Souza (2015) and Li
et al. (2015) studied INAR(1) process with zero-inflated Poisson innovations, INAR(1)
model with zero-modified geometric marginal distribution based on negative binomial
thinning operator and INAR(1) process with zero-inflated generalized power series in-
novations, respectively. Recently, Bakouch et al. (2018) proposed a zero-inflated geo-
metric INAR(1) process with random coefficient and Bourguinon (2018) introduced an
INAR(1) process with zero-modified geometric innovations.

For modeling this type of count data, the zero-modified INAR models often are not
the best choice when data have a very short-run autocorrelation. In this case, we need
to introduce a zero-modified model based on the INMA process that was introduced
by McKenzie (1988) and Al-Osh and Alzaid (1988).

The aim of this paper is to introduce a new INMA(1) process with zero-modified
geometric innovations based on the binomial thinning operator. Advantages of the new
process are these: (i) the model is suitable for modeling count data with excess or deficit
zeros that has a very short-run autocorrelation. (ii) in the model, innovations come
from the zero-modified geometric distribution that is very flexible. (iii) the model is
used to fit the count data which has overdispersion, underdispersion and equidispersion.

The paper is organized as follows: The INMA(1) process with zero-modified geo-
metric innovations is defined in Section 2 and some statistical properties of this model
are derived. In Section 3, the Yule-Walker estimators of the parameters is obtained.
Some simulation results for the estimators are given in Section 4. Section 5 presents
two real applications of the proposed model. Finally, we conclude the paper in Section
6.

2 Construction of the ZMGINMA(1) process
In this section, we introduce an INMA(1) model with zero-modified geometric inno-
vations generated by the binomial thinning operator. The binomial thinning operator
αoX (Steutel and Van Harn, 1979) for a random variable X is generated by a se-
quence of independent and identically distributed (i.i.d.) Bernoulli random variables
{Zi}i≥1 with mean α. For a given random variable X, the random variable αoX has
the binomial distribution with mean αX.

As we mention above, we consider a model which innovations have the zero-modified
geometric distribution. Firstly, we review the zero-modified geometric distribution. A
non-negative integer-valued random variable X is said to follow a zero-modified geo-
metric distribution (ZMG) with parameters µ > 0 and π ∈ (−1/µ, 1), if its probability
mass function is given by

P (X = x) =

{
π + 1−π

1+µ , if x = 0,
(1−π)µx

(1+µ)x+1 , if x = 1, 2, . . . .
(1)

This distribution when π ∈ (−1/µ, 0) and π ∈ (0, 1) have a proportion of less and more
zeros than the geometric distribution, respectively. Thus, this distribution becomes
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a usual geometric distribution if π = 0; a zero-deflated geometric distribution when
π ∈ (−1/µ, 0); a zero-inflated distribution when π ∈ (0, 1).

The probability generating function (pgf) of X is

φ(s) =
1 + πµ(1− s)

1 + µ(1− s)
, |s| < 1.

The expectation, variance, skewness and kurtosis of X are given, respectively, by

E(X) = µ(1− π),

V ar(X) = µ(1− π)[1 + µ(1 + π)],

Sk =
(6µ2 + 4µ+ 1)− 3µ(1− π)(1 + 2µπ)

µ
1
2 (1− π)

1
2 [1 + µ(1 + π)]

3
2

+
2µ2(1− π)2

µ
1
2 (1− π)

1
2 [1 + µ(1 + π)]

3
2

,

Kur =
(24µ3 + 36µ2 + 12µ+ 5)

µ(1− π)[1 + µ(1 + π)]2
− 4µ(1− π)(6µ2 + 4µ+ 1)

µ(1− π)[1 + µ(1 + π)]2

+
6µ2(1− π)2(1 + 2µπ)− 3µ3(1− π)3

µ(1− π)[1 + µ(1 + π)]2
,

The index of dispersion is given by ID(x) = 1 + µ(1− π). Thus,
(i) If π = −1, the ZMG distribution is equidispersed.
(ii) For µ ∈ (0, 1) and π ∈ (−1/µ,−1), the ZMG distribution presents underdispersed.
(iii) For π ∈ (−1, 1), the ZMG distribution is overdispersed.

Definition 2.1. A time series model {Yt}, which is given by

Yt = αoεt−1 + εt, t ∈ {0,±1,±2, . . . }, (2)

is called the integer-valued moving average model with zero-modified geometric innova-
tions (ZMGINMA(1)) if the following conditions are satisfied: (i) {εt} is a sequence
of i.i.d. random variables with a ZMG distribution given by (1), (ii) the counting
series Zi, incorporated in αoεt, is a sequence of i.i.d. Bernoulli random variables with
parameter α ∈ (0, 1) for all i, (iii) all the counting series incorporated in α ⊖ εs and
α ⊖ εt are independent for all s ̸= t, (iv) the counting series Zi is independent of εt
for all t and i.

Under the above assumptions, the expectation and variance of Yt are given, respec-
tively, by

E(Yt) = (1 + α)µ(1− π),

V ar(Yt) = µ(1− π)[(1 + α2)µ(1 + π) + 1 + α].

Also, the index of dispersion is given by

ID(x) =
(1 + α2)µ(1 + π) + 1 + α

1 + α
.

This model is equidispersed or overdispersed if π = −1 or π ∈ (−1, 1), respectively,
and is underdispersed for µ ∈ (0, 1) and π ∈ (−1/µ,−1).
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Figure 1: Sample paths of ZMGINMA(1) process for µ = 0.5, α = 0.3, and different values of π.

Figure 1 shows the sample paths of simulated INMA(1) process with ZMG(π,µ)
innovations for µ = 0.7, α = 0.2, and different values of π. In Figure 1, we observe
that the number of zeros increase as π increases. The autocovariance function of the
proposed model is given by

γ(k) = Cov(Yt, Yt−k) =

{
α[µ(1− π)[1 + µ(1 + π)]], k = 1,

0, k > 1.

Thus, the autocorrelation function is

ρ(k) =

{
α[µ(1−π)[1+µ(1+π)]]

µ(1−π)[(1+α2)µ(1+π)+1+α] , k = 1,

0, k > 1.

We can see that ρ(1) is non-negative and bounded above by 1/2.

Theorem 2.2. The ZMGINMA(1) process has the following properties:
(i) A covariance stationary process.
(ii) Is ergodic in the mean and autocovariance function.

Proof. (i) Since the expectation and variance of the model are constant and autoco-
variance function does not depend on time, the model (2) is covariance stationary.
(ii) the proof is similar to the proof of Theorem 7 from Yu and Zou (2015) hence the
details are avoided.

Using the pgf of the ZMG distribution and the independency of the counting series
and the random variables εt−1 and εt, we obtain that the pgf of the random variable
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Yt is given by

φYt(s) = φεt−1(1− α+ αs)φεt(s) =
1 + πµα(1− s)

1 + µα(1− s)
× 1 + πµ(1− s)

1 + µ(1− s)
,

which implies that the random variable Yt is distributed as the random variable X+W ,
where X and W are independent random variables and have the ZMG distributions
with parameters (π, µ) and (π, αµ), respectively. Thus the probability mass function
of the random variable Yt can be calculated by

P (Yt = k) =


(πµ+1)(πµα+1)
(1+µ)(1+µα) , if k = 0,

(1−π)µk[αk(1+µπ)(1+µ)k+(1+πµα)(1+αµ)k]
(1+µ)k+1(1+αµ)k+1

+ (1−π)2µk

(1+µ)k(1+µα)k

∑k−1
i=1 αi(1 + µ)i−1(1 + µα)k−1−i, if k = 1, 2, . . . .

In this part, we will consider the regression of the proposed model and will show this
model like the GINMA(1) and PINMAPS(1) (Mahmoudi and Rostami, 2020) models
has a non-linear regression. So, we first derive the joint pgf of the random variables
Yt−1 and Yt. It is given by

φYt−1,Yt
(s1, s2) =

1 + πµ(1− s2)

1 + µ(1− s2)
× 1 + πµα(1− s1)

1 + µα(1− s1)
× 1 + πµ(1− s1 + αs1 − αs1s2)

1 + µ(1− s1 + αs1 − αs1s2)
.

The joint pgf can be used for calculating of the conditional pgf of Yt|Yt−1 = x;
which is given in the following theorem.
Theorem 2.3. The conditional pgf of Yt|Yt−1 = x, x ∈ {0, 1, 2, . . . }, is given by

φYt|Yt−1=x(s) =

1+πµ(1−s)
1+µ(1−s)

∑x
j=0

(
x
j

) j!(x−j)!µxαj(1−α+αs)x−j

(1+µα)j+1(1+µ)x−j+1∑x
j=0

(
x
j

) j!(x−j)!µxαj

(1+µα)j+1(1+µ)x−j+1

.

Proof. According to Theorem 1.3.1 from Kocherlakota and Kocherlakota (1992) the
conditional pgf of the random variable Yt for given Yt−1 = x can be derived from the
joint pgf φYt−1,Yt(s1, s2) as

φYt|Yt−1=x(s) =

∂xφYt−1,Yt (0,s)

∂sx1
∂xφYt−1,Yt (0,1)

∂sx1

. (3)

By the Leibniz’s rule, we have

∂xφYt−1,Yt
(s1, s2)

∂sx1
=

1 + πµ(1− s2)

1 + µ(1− s2)

x∑
j=0

(
x

j

)
∂j( 1+πµα(1−s1)

1+µα(1−s1)
)

∂sj1

×
∂x−j( 1+πµ(1−s1+αs1−αs1s2)

1+µ(1−s1+αs1−αs1s2)
)

∂sx−j
1

. (4)

It is easy to derive the kth partial derivatives of 1+πµ(1−s1+αs1−αs1s2)
1+µ(1−s1+αs1−αs1s2)

as

∂k( 1+πµ(1−s1+αs1−αs1s2)
1+µ(1−s1+αs1−αs1s2)

)

∂sk1
=

k!µk(1− π)(1− α+ αs2)
k

(1 + µ(1− s1 + αs1 − αs1s2))k+1
, k = 0, 1, . . . , x. (5)
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On the other hand, after some calculations, we obtain the kth partial derivatives of
1+πµα(1−s1)
1+µα(1−s1)

as

∂k( 1+πµα(1−s1)
1+µα(1−s1)

)

∂sk1
=

k!µkαk(1− π)

(1 + µα(1− s1))k+1
, k = 0, 1, . . . , x. (6)

Finally, replacing (5) and (6) in (4) with s1 = 0 and s2 = s, we obtain the numerator
of (3). In a similar way, one can obtain the denominator of (3) which proves the
theorem.

Now, we derive the regression of the proposed model. It is given in the following
corollary.
Corollary 2.4. The regression of Yt given Yt−1 = x is a non-linear function given by

E(Yt|Yt−1 = x) =

∑x
j=0

(
x
j

) j!(x−j)!µxαj

(1+µα)j+1(1+µ)x−j+1 (µ(1− π) + (x− j)α)∑x
j=0

(
x
j

) j!(x−j)!µxαj

(1+µα)j+1(1+µ)x−j+1

. (7)

Proof. The proof follows from Corollary 1.3.1 given by Kocherlakota and Kocherlakota
(1992) and Theorem 2.3.

The conditional mean and variance of Yt given Ft−1 are obtained as follows

E(Yt|Ft−1) = αεt−1 + µε,

V ar(Yt|Ft−1) = α(1− α)εt−1 + σ2
ε ,

where Ft−1 is the information set at time t− 1.
Note that in this paper, the ZMGINMA(1) model is applied for analyzing count

time series with excess or deficit of zeros, therefore, we derive the distribution of zero
values in the series.
Lemma 2.5. The transition probability from zero to zero and zero to non-zero of the
ZMGINMA(1) model are given, respectively, by

P (Yt = 0 | Yt−1 = 0) =
πµ+ 1

1 + µ
,

P (Yt ̸= 0 | Yt−1 = 0) =
(1− π)µ

1 + µ
.

Proof. According to Theorem 2.3, the conditional pgf of Yt|Yt−1 = 0 is given by

φYt|Yt−1=0(s) =
1 + πµ(1− s)

1 + µ(1− s)
,

thus, the random variable Yt given Yt−1 = 0 has the ZMG distribution with parameters
µ and π. Therefore,

P (Yt = 0 | Yt−1 = 0) =
πµ+ 1

1 + µ
,

P (Yt ̸= 0 | Yt−1 = 0) = 1− P (Yt = 0 | Yt−1 = 0) =
(1− π)µ

1 + µ
.
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In the ZMGINMA(1) model like the INAR(1) model with ZMG innovations (Bour-
guinon (2018)), the run length of zeros, S, has a geometric distribution with termi-
nation probability (1−π)µ

1+µ . Thus, the average of S in the proposed model is given by
E(S) = 1+µ

(1−π)µ . On the other hand, the average run length of zeros in the GINMA(1)
model is E(S0) =

1+µ
µ , therefore,

E(S) ≥ E(S0), for π ∈ [0, 1),

E(S) ≤ E(S0), for π ∈ (−1/µ, 0).

Remark 2.6. The proportion of zeros in the ZMGINMA(1) model is given by

P (Yt = 0) =
(πµ+ 1)(πµα+ 1)

(1 + µ)(1 + µα)
.

3 Estimation of the unknown parameters
In this section, the Yule-Walker (YW) estimatiors of the model parameters are ob-
tained. For this purpose, we consider a random sample of size T from ZMGINMA(1)
model. The YW estimators of α, π and µ are obtained by solving the following equa-
tions:

Ȳ − (1 + α)µ(1− π) = 0,

γ̂(0)− µ(1− π)[((1 + α2)(1 + µ(1 + π)) + α− α2] = 0,

γ̂(1)− αµ(1− π)[1 + µ(1 + π)] = 0,

where Ȳ , γ̂(0) and γ̂(1) are the sample mean, variance and autocovariance function at
lag 1, respectively. Thus, estimator α̂YW is obtained by solving the cubic equation

(γ̂(1)− Ȳ )α3 + (γ̂(1) + Ȳ − γ̂(0))α2 + (γ̂(1)− γ̂(0))α+ γ̂(1) = 0.

After some mathematical computations, the YW estimators of µ and π are given by

µ̂YW =
Ȳ

2(1 + α̂YW )
+

(1 + α̂YW )γ̂(1)− α̂YW Ȳ

2α̂YW Ȳ
,

π̂YW = 1− Ȳ

µ̂YW (1 + α̂YW )
.

Theorem 3.1. The YW estimators of the parameters α, µ and π are consistent.

Proof. According to Theorem 2.2, we have Ȳ
p→ µY , γ̂(0)

p→ γ(0) and γ̂(1)
p→ γ(1)

where µY := E(Yt) and γ(0) := V ar(Yt). Thus, using the properties of convergence in
probability, the consistency of the YW estimators is achieved.

4 Simulation study
In this section, we simulated 10000 samples of size T = 500, 800, 1500 from the ZMGIN
MA(1) model for α = 0.3 and different values of µ and π. We derived the YW estimates,
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Figure 2: Bias and MSE of the simulated YW estimates of α, µ and π for α = 0.3, π = −1, different
values of µ.
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Figure 3: Bias and MSE of the simulated YW estimates of α, µ and π for α = 0.3, π = 0.5, different
values of µ.

bias and mean square error (MSE) of the estimators of α, µ and π. The results are
presented in Tables 1 and 2. Based on Tables 1 and 2, we observe that as the sample
size T increases, the YW estimates converge to the true values.

Figures 2 and 3 show the biases and MSEs of the simulated YW estimators of α,
µ and π. Due to the Figures 2 and 3 and Tables 1 and 2, we can see that the bias
and MSE of the estimators of α and π decrease by increasing µ and the MSE of the
estimates of µ, by increasing µ, decrease when π < 0 and increase when π > 0.
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Table 1: YW Estimates of the parameters, bias and MSE (in parentheses) of the
estimates of α, µ and π for α = 0.3 and different values of µ and π.

Sample size π α̂YW µ̂YW π̂YW

(α, µ) = (0.3, 0.5)
T = 500 −1 0.1767(0.0194) 0.5678(0.0078) −1.1141(0.0408)

Bias −0.1233 0.0677 −0.1141
−0.8 0.1659(0.0219) 0.5632(0.0073) −0.9841(0.0620)

Bias −0.1340 0.0632 −0.1842
T = 800 −1 0.1772(0.0177) 0.5663(0.0065) −1.1113(0.0295)

Bias −0.1227 0.0664 −0.1112
−0.8 0.1659(0.0205) 0.5616(0.0059) −0.9810(0.0501)

Bias −0.1340 0.0616 −0.1810
T = 1500 −1 0.1778(0.0162) 0.5656(0.0054) −1.1074(0.0210)

Bias −0.1222 0.0656 −0.1074
−0.8 0.1676(0.0188) 0.5613(0.0049) −0.9742(0.0397)

Bias −0.1324 0.0613 −0.1742
(α, µ) = (0.3, 0.7)

T = 500 −1 0.2344(0.0092) 0.7450(0.0070) −1.0517(0.0225)
Bias −0.0655 0.0451 −0.0517

−0.8 0.2157(0.0115) 0.7494(0.0074) −0.8982(0.0294)
Bias −0.0843 0.0494 −0.0982

T = 800 −1 0.2338(0.0074) 0.7455(0.0052) −1.0469(0.0147)
Bias −0.0662 0.0455 −0.0469

−0.8 0.2171(0.0096) 0.7485(0.0055) −0.8915(0.0207)
Bias −0.0829 0.0485 −0.0915

T = 1500 −1 0.2342(0.0059) 0.7442(0.0036) −1.0438(0.0087)
Bias −0.0657 0.0442 −0.0438

−0.8 0.2166(0.0084) 0.7486(0.0040) −0.8887(0.0142)
Bias −0.0834 0.0486 −0.0887

(α, µ) = (0.3, 0.9)
T = 500 −1 0.2790(0.0057) 0.9182(0.0076) −1.0212(0.0163)

Bias −0.0209 0.0182 −0.0212
−0.8 0.2528(0.0067) 0.9338(0.0081) −0.8513(0.0175)

Bias −0.0472 0.0338 −0.0513
T = 800 −1 0.2787(0.0037) 0.9169(0.0046) −1.0174(0.0100)

Bias −0.0212 0.0169 −0.0174
−0.8 0.2537(0.0050) 0.9335(0.0054) −0.8449(0.0116)

Bias −0.0462 0.0335 −0.0449
T = 1500 −1 0.2794(0.0021) 0.9163(0.0027) −1.0134(0.0054)

Bias −0.0206 0.0163 −0.0134
−0.8 0.2542(0.0036) 0.9315(0.0033) −0.8444(0.0070)

Bias −0.0457 0.0315 −0.0444

5 Real time series data studies
In this section, the ZMGINMA(1) model is fitted to two real data sets with excess
and deficit of zeros. Then, the results for the proposed model is compared with the
GINMA(1) model (Alzaid and Al-Osh, 1988).
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Table 2: YW Estimates of the parameters, Bias and MSE (in parentheses) of the
estimates of α, µ and π for α = 0.3 and different values of µ and π.

Sample size π α̂YW µ̂YW π̂YW

(α, µ) = (0.3, 2)
T=500 0.2 0.2503 (0.0058) 1.9463(0.0387) 0.0812(0.0209)
Bias -0.0497 -0.0536 -0.1188

0.5 0.2368(0.0073) 1.8071(0.0885) 0.3214(0.0380)
Bias −0.0631 −0.1929 −0.1786

T = 800 0.2 0.2511(0.0044) 1.9496(0.0244) 0.0856(0.0173)
Bias −0.0489 −0.0503 −0.1144

0.5 0.2389(0.0059) 1.8144(0.0675) 0.3275(0.0337)
Bias −0.0610 −0.1856 −0.1725

T = 1500 0.2 0.2526(0.0034) 1.9534(0.0141) 0.0910(0.0142)
Bias −0.0474 −0.0460 −0.1090

0.5 0.2398(0.0047) 1.8178(0.0505) 0.3311(0.0306)
Bias −0.0602 −0.1822 −0.1689

(α, µ) = (0.3, 3)
T = 500 0.2 0.2682(0.0042) 2.9493(0.0702) 0.1293(0.0103)

Bias −0.0318 −0.0506 −0.0707
0.5 0.2584(0.00481) 2.8055(0.1423) 0.3885(0.0167)

Bias −0.0415 −0.1944 −0.1114
T = 800 0.2 0.27(0.0029) 2.9557(0.0450) 0.1332(0.0078)

Bias −0.0300 −0.0443 −0.0667
0.5 0.2595(0.0036) 2.8110(0.0993) 0.3928(0.0142)

Bias −0.0405 −0.1890 −0.1072
T = 1500 0.2 0.2707(0.0019) 2.9577(0.0243) 0.1362(0.0059)

Bias −0.0293 −0.0423 −0.0637
0.5 0.2609(0.0026) 2.8169(0.0681) 0.3959(0.0122)

Bias −0.0391 −0.1830 −0.1040
(α, µ) = (0.3, 4)

T = 500 0.2 0.2759(0.0037) 3.9533(0.1089) 0.1487(0.0072)
Bias −0.0241 −0.0466 −0.0513

0.5 0.2692(0.0041) 3.8099(0.2111) 0.4199(0.01)
Bias −0.0307 −0.1901 −0.0801

T = 800 0.2 0.2786(0.0024) 3.9629(0.0715) 0.1543(0.0050)
Bias −0.0214 −0.0371 −0.0456

0.5 0.2699(0.0028) 3.8108(0.1452) 0.4222(0.0083)
Bias −0.0301 −0.1891 −0.0777

T = 1500 0.2 0.2791(0.0015) 3.9618(0.0382) 0.1564(0.0034)
Bias −0.0208 −0.0382 −0.0436

0.5 0.2706(0.0019) 3.8178(0.0908) 0.4249(0.0068)
Bias −0.0294 −0.1821 −0.0751

5.1 Number of rubella cases
The first example assumes the number of rubella cases, monthly from Aug 2012 - Dec
2018 in Spain. The sample path, autocorrelation and partial autocorrelation functions
of the series are shown in Figure 4. Due to this Figure 4, we deduce that an INMA(1)
model can be appropriate for modeling this data set, because there exists a cut-off after
lag 1 in the sample autocorrelation. The sample mean, variance and empirical index of
dispersion are, respectively, 0.43, 1.54 and 3.59. Since the index of dispersion exceeds
1, the rubella series is overdispersed. The proportion of zeros in the rubella series is
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%74 which it shows exist inflation of zeros in the series. Thus, a zero-inflated count
time series model must be assumed for modeling this series.

Time

Rub
ella

0 20 40 60 80

0
2

4
6

8
10

0 5 10 15

−0.
2

0.0
0.2

0.4
0.6

0.8
1.0

Lag

ACF

Rubella series

5 10 15

−0.
2

−0.
1

0.0
0.1

0.2

Lag

PAC
F

Rubella series

Figure 4: The sample path, ACF and PACF plots of the number of rubella cases, monthly from Aug
2012 - Dec 2018 in Spain.

We fit the ZMGINMA(1) and GINMA(1) models to this data set. For both models,
we calculate the YW estimates, lower and upper bounds of the %95 confidence intervals
(by performing bootstrap resampling) of the parameters and the root mean square of
difference between observations and predicted values (RMS). The results are reported
in Table 3. According to this Table, we observed that the ZMGINMA(1) model presents
a better fit and forecast than the GINMA(1) model to this series, because its RMS is
smaller. Figure 5 shows the plot of the rubella data series and their predicted values
which are obtained by (7).

The positive value of the estimate of π in Table 3 shows the inflation of zeros in the
ZMGINMA(1) model. The proportions of zeros based on the estimated ZMGINMA(1)
and GINMA(1) models are %82 and %70, respectively. Now, we test the hypothesis
H0 : π = 0(GINMA(1)) versus the hypothesis H1 : π ̸= 0(ZMGINMA(1)). Due to the
Table 3, since the confidence interval of π does not contain the zero value, thus, we
reject H0. Therefore, the ZMGINMA(1) model is suitable for fitting to this data set.

Table 3: Estimated parameters, lower and upper bounds of the %95 confidence inter-
vals of the parameters and RMS for the rubella series.

Model Parameter YW Estimates Lower Upper RMS
α 0.02 0.0034 0.3734

ZMGINMA(1) µ 1.52 0.4527 2.9989 1.2262
π 0.72 0.3909 0.8621

GINMA(1) α 0.02 0.0038 0.3475 1.2265
µ 0.42 0.2472 0.5930

5.2 Number of earthquakes
The second example assumes the number of earthquakes magnitude 8.0 to 9.9, annually
from 1970-2018 in the world. The sample path, autocorrelation and partial autocor-
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Figure 5: rubella data and their predicted values.

relation functions of the series are shown in Figure 6. Due to the Figure 6, one can
realize that an INMA(1) process can be suitable for modeling this data set, because
exists a cut-off after lag 1 in the sample autocorrelation. The sample mean, variance
and empirical index of dispersion are, respectively, 0.8, 0.75 and 0.94. Since the index
of dispersion lower than 1, the earthquakes series is underdispersed. The proportion of
zeros in the earthquakes series is %42.9 which it shows exist deflation of zeros in the
series. Thus, this series must be modeled by a zero-deflated count time series model.

Time

Ear
thqu

ake
s

0 10 30 50

0
1

2
3

4

0 5 10 15

−0.
2

0.0
0.2

0.4
0.6

0.8
1.0

Lag

ACF

Earthquakes series

5 10 15

−0.
3

−0.
2

−0.
1

0.0
0.1

0.2
0.3

Lag

PAC
F

Earthquakes series

Figure 6: The sample path, ACF and PACF plots of the number of earthquakes magnitude 8.0 to
9.9, annually from 1970-2018 in the world.

We fit the ZMGINMA(1) and GINMA(1) models to this data set. For both models,
we obtain the Yule-Walker estimates, lower and upper bounds of the %95 confidences
interval (by performing bootstrap resampling) of the parameters and RMS. The results
are reported in Table 4. According to the values of Table 4, we observed that the
ZMGINMA(1) model gives a better fit and forecast than the GINMA(1) model to this
series, because its RMS is smaller. Figure 7 shows the plots of the earthquakes data
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series and their predicted values which are obtained by (7). The negative value of the
estimate of π in Table 4 shows the deflation of zeros in the ZMGINMA(1) model. The
proportions of zeros based on the estimated ZMGINMA(1) and GINMA(1) models are
%43.1 and %52, respectively. Now, we test the hypothesis H0 : π = 0 (GINMA(1))
versus the hypothesis H1 : π ̸= 0(ZMGINMA(1)). Due to Table 4, since the confidence
interval of π does not contain the zero value, thus, we reject H0. Therefore, the
ZMGINMA(1) model is suitable for fitting to this data.

Table 4: Estimated parameters, lower and upper bounds of the %95 confidence intervals
of the parameters and RMS for the earthquakes series.

Model Parameter YW Estimates Lower Upper RMS
α 0.35 0.0121 0.5832

ZMGINMA(1) µ 0.26 0.1081 0.6229 0.8329
π −1.27 −5.1330 −0.3998

GINMA(1) α 0.35 0.0121 0.6244 0.8334
µ 0.591 0.5422 1.2367
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Figure 7: Earthquakes data and their predicted values.

6 Discussion and conclusions
This paper provides a new INMA(1) process generated by the binomial thinning op-
erator. This process is appropriate for modeling zero-inflated or zero-deflated count
time series that have a very short-run autocorrelation. Some statistical properties of
the process have been obtained. The estimators of the model parameters are obtained
using the YW method and also, are shown these estimators are consistent. Then the
performance of the YW estimators are evaluated via simulation. At the end, we ap-
ply the proposed model to two real data sets and conclude that the model gives the
better performance the GINMA(1) model for fitting and predicting future values of
zero-inflated and zero-deflated count data.
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