
Journal of Statistical Modelling: Theory and Applications
Vol. 4, No. 1, 2023, pp. 25-44
Yazd University Press 2023

Research Paper

Logit Gudermannian distribution: Properties, regression and
applications

Abdulzeid Yen Anafo1, Selasi Kwaku Ocloo∗1, Hanifatu Napari Mumuni2,
Suleman Nasiru3

1Department of Mathematical Sciences, University of Mines and Technology,
Ghana

2Statistics Department, Tamale Technical University, Tamale, Ghana
3Department of Statistics and Actuarial Science, School of Mathematical

Sciences, C. K. Tedam University of Technology and Applied Sciences, Ghana

Received: May 14, 2023/ Revised: October 08, 2023/ Accepted: December 18, 2023

Abstract: In this paper, we propose a unit distribution called the logit Guderman-
nian distribution and present various statistical properties of the proposed model. Six
parameter estimation methods are explored in the quest to estimate the parameters
of the proposed distribution. We determine which estimation methods provide bet-
ter parameter estimates through simulation studies. The study shows that the logit
Gudermannian distribution provides a better fit for the datasets used than other unit
distributions. Consequently, the logit Gudermannian distribution is used to develop
a parametric regression model for studying the relationship between a unit response
variable and other exogenous variables. The new regression model’s performance is
compared to that of other existing regression models and found to be competitive.
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1 Introduction
In the area of probability distributions, researchers are constantly searching for robust
approaches to accurately model complex data. One of such intriguing addition to the
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field is the Gudermannian distribution (Altun, 2019), a versatile probability distribu-
tion that offers unique advantages in capturing the characteristics of diverse datasets.
Derived from the Gudermannian function, this distribution exhibits remarkable flex-
ibility, making it a valuable tool in various domains, including statistics, machine
learning, and data science. Classical probability distributions, such as the normal or
Gaussian distribution, have long been the options available due to their simplicity and
well-defined properties. However, their limitations in handling non-linear and skewed
data have motivated the exploration of alternative distributions that better capture
the inherent complexities present in many real-world datasets. Although the beta
distribution has been adopted in modelling unit data, it has some limitations. As
a result, several flexible distributions have been proposed as alternatives. Distribu-
tions including the unit exponential Pareto distribution proposed by Haj Ahmad et al.
(2023), compound class of unit Burr XII model proposed by Zayed et al. (2023) , the
bounded truncated Cauchy power exponential proposed by Nasiru et al. (2022) , the
unit Burr XII distribution proposed by Korkmaz and Chesneau (2021), the bounded
odd inverse Pareto exponential distribution proposed by Nasiru et al. (2021), unit
power-logarithmic distribution proposed by Chesneau (2021) , the transmuted unit
Rayleigh distribution proposed by Korkmaz et al. (2021), the unit Lindley distribution
proposed by Mazucheli et al. (2019), the unit-Rayleigh distribution proposed by Bantan
et al. (2020), the unit-Birnbaum-Saunders distribution proposed by Mazucheli et al.
(2018), the McDonald arcsine distribution proposed by Cordeiro and Lemonte (2014),
Kumaraswamy distribution proposed by Kumaraswamy (1980) and the Topp-Leone
distribution proposed by Topp and Leone (2021).

The Logit Gudermannian (LG) distribution emerges as an option, bridging the gap
between classical distributions and the need for more robust modeling techniques. The
LG distribution is characterized by its ability to handle bounded data, as it maps
values from the entire real line onto a finite interval. This property makes it particu-
larly well-suited for modeling variables that naturally exhibit upper and lower bounds,
such as probabilities, proportions, or constrained measurements. By leveraging the
Gudermannian function, which maps the real line to a bounded range, and the logit
transformation, which converts probabilities into unbounded values, this distribution
provides a powerful framework for capturing and analyzing a wide range of unit data.

The applications of the LG distribution would be diverse and span multiple disci-
plines. Its usage would extend beyond classical statistical modeling and find relevance
in fields such as actuarial science, risk assessment, time series analysis, and beyond.

In this article, we delve into the LG distribution exploring its mathematical for-
mulation, key statistical properties, and practical applications. We demonstrate its
versatility through practical applications and the formulation of the LG parametric
regression model.

The following is an outline of how the paper is structured: Section 2 introduces
the derivation of the probability density function (PDF), cumulative distribution func-
tion (CDF) and failure rate function (FRF). Some statistical properties of the proposed
model are derived in Section 3. Section 4 proposes the LG generated family of distribu-
tions. Six methods of parameter estimation, the parametric LG regression model, and
simulation studies assessing the estimation methods are discussed in Section 5, 6, and
7, respectively. Section 8 applies the proposed model to real datasets to demonstrate
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its usefulness, and Section 9 concludes the study.

2 Logit Gudermannian distribution
According to Altun (2019), the CDF of the Gudermannian distribution is given by
FY (y; ζ) =

2
π arctan(eζy), ζ > 0, y ∈ R while the PDF is denoted by

fY (y; ζ) =
2ζeζy

π(1 + e2ζy)
, ζ > 0, y ∈ R.

Given that the random variable X is related to Y such that X = 1/(1 + e−Y ) . Then
by univariate transformation of random variables, the CDF of the LG distribution is
given by

FX(x; ζ) = FY

(
− log

(
1− x

x

)
; ζ

)
=

2

π
arctan

[
xζ(1− x)−ζ

]
, x ∈ (0, 1), ζ > 0.

The corresponding PDF and the FRF of the LG distribution are given by

fX(x; ζ) =
2ζxζ−1(1− x)−ζ−1

π[1 + x2ζ(1− x)−2ζ ]
, x ∈ (0, 1)

hX(x; ζ) =
2π−1ζxζ−1(1− x)−ζ−1

[1 + x2ζ(1− x)−2ζ ][1− 2π−1 arctan[xζ(1− x)−ζ ]]
, x ∈ (0, 1),

respectively.
The shapes of the PDF and FRF are shown in Figures 1 and 2, respectively.
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Figure 1: The PDF of the LG distribution.

The linear representation of the PDF can be used to deduce the statistical properties
of the LG distribution.
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Figure 2: The FRF shapes of the LG distribution.

Lemma 2.1. The linear representation of the PDF of the LG distribution is given as

fX(x; ζ) =
2ζ

π

∞∑
l=0

∞∑
p=0

(−1)l
(
ζ(2l + 1) + p

p

)
xζ(2l+1)+p−1.

Proof. By employing the Taylor series expansion,

z−λ =

∞∑
l=0

(−1)lλ(l)

l!
zl, z > 0,

where λ(l) = λ(λ+ 1)(λ+ 2) . . . (λ+ l − 1) is the rising factorial,

1

[1 + x2ζ(1− x)−2ζ ]
=

∞∑
l=0

(−1)lx2ζl(1− x)−2ζl.

The PDF can be expressed as

fX(x; ζ) =
2ζ

π

∞∑
l=0

(−1)lxζ(2l+1)−1(1− x)−[ζ(2l+1)+1].

The PDF
fX(x; ζ) =

2ζ

π

∞∑
l=0

∞∑
p=0

(−1)l
(
ζ(2l + 1) + p

p

)
xζ(2l+1)+p−1,

can be obtained by utilizing the generalised binomial expansion

(1− v)−ω =

∞∑
p=0

(
ω + p− 1

p

)
vp, |v| < 1.

This completes the proof.
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The quantile function of the LG distribution can be expressed as

QX(q) = [1 + (tan[πq/2])−1/ζ ]−1, q ∈ [0, 1].

Proposition 2.2. The CDF of the LG distribution increases in ζ for x ∈ (0, 0.5] and
decreases in ζ for x ∈ [0.5, 1] given ζ > 0.

Proof. Differentiating the CDF with respect to ξ , we obtain

∂FX(x; ζ)

∂ζ
= −

2
(
1−x
x

)ζ
log
(
1−x
x

)
π
[
1 +

(
1−x
x

)2ζ] .

Using the fact that log
(
1−x
x

)
< 0 for x ∈ [0.5, 1] and log

(
1−x
x

)
> 0 for x ∈ [0, 0.5) ,

the results in Proposition 2.2 is achieved.

Proposition 2.2 can be used to deduced the stochastic ordering property. FX(x; ζ)
is positively ordered with respect to ζ for x ∈ (0, 0.5], thus if ζ1 ≤ ζ2 , then FX(x; ζ1) ≤
FX(x; ζ2) and negatively ordered with respect to ξ for x ∈ [0.5, 1], thus if ζ1 ≤ ζ2 ,
then FX(x; ζ) ≥ FX(x; ζ2).

3 Statistical properties
In this section, we discuss various statistical properties of the LG distribution, including
nth non-central and incomplete moments, moment generating functions, and order
statistics.

3.1 Moments and generating functions
Moments play a crucial role in analyzing measures of central tendency, spread, and
shape in statistical analysis.

Proposition 3.1. The nth non-central moment of the LG distribution is

µ
′

n =
2ζ

π

∞∑
i=0

∞∑
p=0

(−1)l(ζ(2l + 1) + p)Γ(ζ(2l + 1) + p)

(n+ ζ(2l + 1) + p)(ζ(2l + 1))Γ(ζ(2l + 1))pΓ(p)
, n = 1, 2, . . . ,

where Γ(.) is the gamma function.

Proof. The nth non-central moment is defined by µ
′

n =
∫ 1

0
xndFx(x; ζ). Hence, substi-

tuting the linear expansion of the PDF into the definition we have

µ
′

n =
2ζ

π

∞∑
i=0

∞∑
p=0

(−1)l
(
ζ(2l + 1) + p

p

)∫ 1

0

xn+ζ(2l+1)+p−1dx.

Simplifying the integral and using the fact that aΓ(a) = Γ(a+ 1), we obtain

µ
′

n =
2ζ

π

∞∑
i=0

∞∑
p=0

(−1)l(ζ(2l + 1) + p)Γ(ζ(2l + 1) + p)

(n+ ζ(2l + 1) + p)(ζ(2l + 1))Γ(ζ(2l + 1))pΓ(p)
, n = 1, 2, . . . .
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The central moment (µn) and the cumulants (κn) of the LG random variable are
obtained as

µn =

n∑
i=0

(−1)i
(
n

i

)
µ

′n
1 µ′

n−i,

κn = µ
′
−

n−1∑
i=1

(
n− 1

i− 1

)
κiµ

′

n−i,

respectively, where κ1 = µ
′

1, κ2 = µ
′

2−(µ
′

1)
2, κ3 = µ

′

3−3µ
′

2µ
′

1+2(µ
′

1)
3, κ4 = µ

′

4−4µ
′

3µ
′
+

6µ
′

2(µ
′

1)
2 − 3(µ

′

1)
4 and so on. The coefficient skewness and kurtosis are respectively

obtained from the cumulants using ϕ1 = κ3/κ
3/2
2 and ϕ2 = κ4/κ

2
2.

Proposition 3.2. The nth incomplete moment of the LG distribution is given by

φn(y) =
2ζ

π

∞∑
l=0

∞∑
p=0

(−1)l(ζ(2l + 1) + p)Γ(ζ(2l + 1) + p)yn+ζ(2l+1)+p

(n+ ζ(2l + 1) + p)(ζ(2l + 1))Γ(ζ(2l + 1))pΓ(p)
, n = 1, 2, . . . .

Proof. The nth incomplete moment is given by φn(y) =
∫ y

0
xndFX(x; ζ). Using the

linear expansion of the PDF and simplifying we have

φn(y) =
2ζ

π

∞∑
l=0

∞∑
p=0

(
ζ(2l + 1) + p

p

)∫ y

0

xn+ζ(2l+1)+p−1dx

=
2ζ

π

∞∑
l=0

∞∑
p=0

(−1)l(ζ(2l + 1) + p)Γ(ζ(2l + 1) + p)yn+ζ(2l+1)+p

(n+ ζ(2l + 1) + p)(ζ(2l + 1))Γ(ζ(2l + 1))pΓ(p)
.

Proposition 3.3. The moment generating function of the LG distribution is given by

MX(t) =
2ζ

π

∞∑
n=0

∞∑
l=0

∞∑
p=0

(−1)ltn(ζ(2l + 1) + p)Γ(ζ(2l + 1) + p)

n!(n+ ζ(2l + 1) + p)(ζ(2l + 1))Γ(ζ(2l + 1))pΓ(p)
.

Proof. By definition, the moment generating function is given as

MX(t) = E(etX) =

∫ 1

0

etxdFX(x; ζ) =
∞∑

n=0

tn

n!
µ

′

n.

Substituting the nth non-central moment, we obtain the required function.

3.2 Order statistics
By utilizing order statistics, researchers can approximate the minimum and maximum
values, as well as the range, of a given set of data. If X1 ≤ X2 ≤ · · · ≤ Xn are order
statistics from the LG distribution, it follows that the PDF of the kth order statistic
is given as

fk(x; ζ) = Ωk[FX(x; ζ)]k−1[1− FX(x; ζ)]n−kfX(x; ζ),
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where Ωk = n!
(k−1)!(n−k)! .

Using the binomial series expansion, (1 − z)δ−1 =
∑∞

l=0(−1)l
(
δ−1
l

)
zl, |z| ≤ 1, the

PDF of the kth order statistics given by

fk(x) = Ωk

k−1∑
l=0

(−1)l
(
k − 1

l

)
[1− FX(x; ζ)]n−k+1fX(x; ζ).

The PDF of the kth order statistics obtained from the LG distribution is

fk(x) =
Ωk:n2ζx

ζ−1(1− x)−ζ−1

π[1 + x2ζ(1− x)−2ζ ]

k−1∑
l=0

(−1)j
(
k − 1

l

)[
1− 2

π
arctan

[(
1− x

x

)−ζ
]]n−k+l

.

The CDF of the minimum order statistic X1 is derived as

FX1(x) = 1− [1− FX(x; ζ)]n

= 1−

[
1− 2

π
arctan

[(
1− x

x

)−ζ
]]n

,

while the CDF of the maximum order statistic Yn is given by;

FX1
(x) = [FX(x)]n = 1−

[
2

π
arctan

[
1− x

x

]ζ]n
.

4 LG generated family of distributions
The developments of generators for modifying existing distributions have gained much
attention recently. This section presents another family of distributions using the LG
distribution. This new family is known as the LG-generated (LG-G) family of distri-
butions. Suppose that the random variable follows the LG-G family of distributions.
Then the CDF of the new family is obtained as

FY (y) =
2

π
arctan

[(
G(y;ϖ)

1−G(y;ϖ)

)ζ
]
, ζ > 0, y ∈ R, ϖ ∈ R.

The corresponding PDF of the family is given by

fy(y) =
2ζg(y;ϖ)G(y;ϖ)ζ−1(1−G(y;ϖ))−ζ−1

π[1 +G(y;ϖ)2ζ(1−G(y;ϖ))−2ζ ]
, y ∈ R, ϖ ∈ R.

The failure rate function is given by

hY (y) =
2ζg(y;ϖ)G(y;ϖ)ζ−1(1−G(y;ϖ))−ζ−1

π[1 +G(y;ϖ)2ζ(1−G(y;ϖ))−2ζ ]

[
1− 2

π arctan

[(
G(y;ϖ)

1−G(y;ϖ)

)ζ]] .
The details of the LG-G family are beyond the scope of this paper.
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5 Parameter estimation methods
The estimation of LG distribution parameters with a focus on six techniques are dis-
cussed in this section

5.1 Maximum likelihood estimation
If x1, x2, . . . xv is a random sample of size v from the LG distribution, the the log-
likelihood function for estimating the parameter ζ can be expressed as

ℓ = v log

(
2ζ

π

)
+ (ζ − 1)

v∑
i=1

log(xi)− (ζ + 1)

v∑
i=1

log(1− xi)

−
v∑

i=1

log(1 + x2ζ
i (1− xi)

−2ζ).

Using MATLAB, MATHEMATICA, or R, we can directly maximize the log-likelihood
function to obtain the parameter estimate.

5.2 Ordinary and weighted least squares estimation
If x(1), x(2), . . . , x(v) are the ordered observations from the LG distribution, then the
ordinary least squares (LSE) estimate of ζ̂ is obtained by minimising the function

LSE =

v∑
i=1

[(
4

π
arctan

[(
1− x(i)

xi

)−ζ
])

− i

v + 1

]2
,

with respect to ζ.
The weighted least squares (WLSE) estimate of ζ̂ is obtained by minimising the

function

WLSE =

v∑
i=1

(v + 1)2(v + 2)

l(v − i+ 1)

[(
4

π
arctan

[(
1− x(i)

xi

)−ζ
])

− i

v + 1

]2
,

with respect to ζ.

5.3 Cramér-von Mises estimation
If x(1), x(2). . . . , x(v) are the ordered observations based on the LG distribution, then
the Cramér-von Mises (CVME) estimate of ζ̂ is obtained by minizing the function:

CVME =
1

12v
+

v∑
i=1

[(
4

π
arctan

[(
1− x(i)

xi

)−ζ
])

− 2i− 1

2v

]2
,

with respect to ζ.
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5.4 Anderson-Darling estimation
If x(1), x(2). . . . , x(v) are the ordered observations based on the LG distribution, then
the Anderson-Darling (ADE) estimate is obtained by minimizing the function

ADE = −v − 1

v

v∑
i=1

(2i− 1)[logFX(x(i)|ζ) + log(1− FX(x(i)|ζ))],

with respect to ζ.

5.5 Percentile estimation
If x(1), x(2), . . . , x(v) are the ordered observations from the LG distribution and qi =
i/(v + 1) is an unbiased estimator of FX(x(i)|ζ) , then the PE estimate of the LG
distribution’s parameter can be derived by minimizing the function

PE =

v∑
i=1

[
x(i) −

(
1 +

(
tan

[πqi
2

])−1/ζ
)−1

]2
,

with respect to ζ.

6 Parametric LG regression
If a response variable follows the LG distribution, a new parametric LG regression
(PLGR) model can be obtained by linking the parameter ζ > 0 to a set of covariates
using the logarithmic link function. Thus, ζi = exp (z

′

iθ), where θ = (θ0, θ1, θ2..., θk)
′ is

the vector of the coefficients of the covariates, z′

i = (1, zi1, zi2..., zik) and i = 1, 2, 3..., n
. The PDF of the PLGR model is given as

fX(x) =
2 exp(z

′

iθ)x
exp(z

′
iθ)−1(1− x)− exp(z

′
iθ)−1

π
[
1 + x2 exp(z

′
iθ)(1− x)−2 exp(z

′
iθ)
] .

The log-likelihood function is then given by

ℓ = n log(2/π) +

n∑
i=1

log ζi +

n∑
i=1

(ζi − 1) log xi −
n∑

i=1

(ζi + 1) log(1− xi)

−
n∑

i=1

log[1 + x2ζi
i (1− xi)

−2ζi ].

The parameter estimates of the model are derived by maximizing the log-likelihood
function directly.

7 Simulation study
The simulation results are presented and interpreted to find the most appropriate esti-
mation method. The simulation studies are carried out using different parameter values
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of the LG distribution to generate random observations with the help of the quantile
function. The simulations are conducted using R software and results presented in
Tables 1, 2 and 3 for three set of parameter values.

Table 1, 2 and 3 displays simulated results for the different estimators using the
MSEs and ABs. For all the estimation techniques, it can be shown that the ABs
and MSEs values generally decrease as the sample size increases. Even though the
experiment was performed 1,000 times, the simulation results are comparable, demon-
strating the estimators’ consistency and efficacy. However, it can be noticed that the
MLE method was the best and more efficient in estimating parameter ζ for the LG
distribution, with the lowest MSEs and ABs as sample sizes increases compared with
the other estimators except at sample size n = 300 in Table 1. In addition, the ABs
and MSEs of MLE for all parameter values tend to decrease faster compared with the
other estimators. Hence, the MLE method was the best for the parameter ζ.

Table 1: Simulated MSE and AB values for ζ = 1.2.
Method MLE LSE WLSE CVME ADE PE
MSEs 0.0024 0.0461 0.0481 0.0428 0.0468 0.0154

n = 30 ABs 0.0603 0.1615 0.1675 0.1568 0.1654 0.0980
Sum of Ranks 2 8 12 6 10 4
MSEs 0.0015 0.0954 0.0141 0.0149 0.0148 0.0842

n = 80 ABs 0.0099 0.0152 0.0928 0.0960 0.0951 0.2418
Sum of Ranks 2 8 5 9 7 11
MSEs 0.0006 0.0061 0.0060 0.0056 0.0061 0.0059

n = 200 ABs 0.0120 0.0619 0.0617 0.0597 0.0619 0.0617
Sum of Ranks 2 12 8 4 10 6
MSEs 0.0038 0.0036 0.0039 0.0041 0.0036 0.0041

n = 300 ABs 0.0194 0.0486 0.0498 0.0506 0.0478 0.0507
Sum of Ranks 4 5 8 11 3 11
MSEs 0.0026 0.0028 0.0030 0.0030 0.0424 0.0032

n = 400 ABs 0.0018 0.0052 0.0442 0.0426 0.0029 0.0445
Sum of Ranks 2 5 9 7 7 11
MSEs 0.0012 0.0021 0.0357 0.0021 0.0022 0.0019

n = 550 ABs 0.0017 0.0363 0.0020 0.0371 0.0380 0.0351
Sum of Ranks 2 7 8 9 11 5
MSEs 0.0011 0.0018 0.0018 0.0019 0.0018 0.0019

n = 650 ABs 0.0040 0.0336 0.0331 0.0343 0.0340 0.03466

Sum of Ranks 2 7 4 10 7 12

8 Application of the LG distribution

The LG distribution is fitted to two lifetime datasets to ascertain its applicability. The
fit of the LG distribution is compared with five (5) competitive distributions namely;
Kumaraswamy (Kumaraswamy, 1980), unit Weibull (Mazucheli et al., 2018), unit-
Marshall-Olkin extended exponential (UMOEE) (Ghosh et al., 2019), unit Gompertz
(Mazucheli et al., 2019) and Topp-Leone (Topp and Leone, 2021) distributions.
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Table 2: Simulated MSE and AB values for ζ = 5.5.
Method MLE LSE WLSE CVME ADE PE
MSEs 1.0080 1.0232 1.0458 1.3664 1.9937 1.0118

n = 30 ABs 0.2996 0.7827 0.8102 0.4717 0.7887 0.3007
Sum of Rank 2 5 7 4 7 3
MSEs 0.3505 0.3554 0.3615 1.9380 1.2939 0.3543

n = 80 ABs 0.1692 0.4709 0.4760 1.4483 0.8884 0.1786
Sum of Rank 2 6 8 12 10 4
MSEs 0.1331 0.1378 0.1410 0.3053 0.3398 0.1360

n = 200 ABs 0.1404 0.2977 0.2979 0.9053 0.5347 0.1542
Sum of Rank 2 6 8 10 12 4
MSEs 0.1296 0.2411 0.2155 0.3292 0.3597 0.1490

n = 300 ABs 0.1149 0.3898 0.2325 0.4562 0.2478 0.2314
Sum of Rank 2 9 6 11 10 4
MSEs 0.1071 0.3649 0.2727 0.1614 0.2988 0.1081

n = 400 ABs 0.1089 0.2035 0.2184 0.3416 0.4362 0.1109
Sum of Rank 2 8 8 8 11 4
MSEs 0.0220 0.0458 0.0496 0.1821 0.1734 0.0353

n = 550 ABs 0.0919 0.1706 0.1773 0.3411 0.3361 0.3329
Sum of Rank 2 5 7 12 10 6
MSEs 0.0210 0.0417 0.0419 0.1379 0.1354 0.1117

n = 650 ABs 0.0612 0.1651 0.1648 0.2943 0.2917 0.1090
Sum of Rank 2 6 6 12 10 6

Table 3: Simulated MSE and AB values for ζ = 10.8.
Method MLE LSE WLSE CVME ADE PE
MSE 3.0459 3.2967 3.7686 3.8976 3.3470 3.5036

n = 30 AB 1.4262 1.5142 1.4826 1.6600 1.4288 1.4508
Sum of Ranks 2 7 9 12 5 7
MSE 0.5494 1.2393 1.1335 3.4347 1.2939 1.2408

n = 80 AB 0.4989 0.8841 0.8479 1.4483 0.8884 0.8621
Sum of Rank 2 7 4 12 10 7

n = 200 MSE 0.4021 0.4778 0.5016 1.3053 0.4540 0.4306
AB 0.4001 0.5437 0.5524 0.9053 0.5347 0.5210
Sum of Rank 2 8 10 12 6 4
MSE 0.3001 0.3107 0.3225 0.3292 0.3597 0.3348

n = 300 AB 0.4012 0.4339 0.4498 0.4558 0.0478 0.4564
Sum of Rank 3 5 7 9 7 11
MSE 0.2019 0.2239 0.2375 0.2614 0.2988 0.2496

n = 400 AB 0.3001 10.8266 0.3857 0.4052 0.4362 0.3978
Sum of Rank 2 8 5 9 11 7
MSE 0.0012 0.1723 0.1737 0.1821 0.1734 0.1700

n = 550 AB 0.2330 0.3304 0.3314 0.3411 0.3361 0.3329
Sum of Rank 2 5 8 12 9 6
MSE 0.0010 0.1465 0.1624 0.1379 0.1354 0.1417

n = 650 AB 0.2330 0.3037 0.3199 0.2943 0.2917 0.2979
Sum of Rank 2 10 12 6 4 8

8.1 Trade share data
In this first application, we consider economic growth data taken from Stock and Wat-
son (2003) and used by Hassan et al. (2021). The dataset contains values of trade
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shares of 61 different countries. Table 4 displays the descriptive statistics of the trade
share dataset, mean (x̄), median (M), standard deviation (SD), coefficient of skewness
(CK) and coefficient of kurtosis (CK). It can be observed that the trade share data
are approximately symmetric with CK of 0.0061 and leptokurtic with excess kurtosis
of 2.5528. The data also depicts a low standard deviation. Figure 3 shows the boxplot
and time total on test (TTT) plots. The TTT plots for the dataset show a concave
characteristic that indicates increasing failure intensity. The boxplot depicts slightly
skewed to the left with no extreme value.

Table 4: Descriptive statistics of trade share data.
n Minimum Maximum x̄ M SD CS CK
61 0.1405 0.9794 0.5142 0.5278 0.1935 0.0061 2.5528

Figure 3: Boxplots (left) and TTT plots (right) of the trade share dataset.

Table 5: Estimates and standard errors connected to model parameters for the trading
share dataset.

Distribution Parameters Estimates Standard Error
LG ζ 1.6292 0.1882
Kumaraswamy a 2.3294 0.3055

b 2.7624 0.5549
UMOEE a 0.5549 4.1115

b 3.3844 0.5056
Unit Gompertz a 0.6162 0.2660

b 1.0921 0.2471
Unit Weibull a 1.3396 0.1726

b 1.7345 0.1695
Topp-Leone a 2.7392 0.3507
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Figure 4: The profile log-likelihood plot for trade share dataset.

Table 5 shows the MLEs of the parameters together with standard errors of the
distributions. Using the profile of the log-likelihood function in Figure 4 we ascertain
the estimated parameter as a true maxima. From Table 6, the LG distribution provides
the best fit as the LG distribution has the highest log-likelihood (L) value, lowest Akaike
information criterion (AIC), Bayesian information criterion (BIC) and consistent AIC
(AICc) together with the highest p-values of the Kolmogorov-Smirnov (KS), Cramér-
von Mises (CV) and Anderson-Darling (AD) tests. Consequently, we consider the LG
distribution an appropriate alternative to the other competing models for the given
data. The appropriateness and applicability of the fitted models are visualised in
Figure 5. The fitted models’ estimated PDF and CDF suggests that the LG model
offers the best fit.

Table 6: Selection criteria for the trade share dataset.

Distribution L AIC AICc BIC AD CV KS
LG 14.616 -27.232 -27.164 -25.121 0.385 0.056 0.066

(0.863) (0.844) (0.940)
Kumaraswamy 13.622 -23.243 -23.036 -19.021 0.4121 0.056 0.069

(0.836) (0.842) (0.914)
UMOEE 13.811 -23.622 -23.415 -19.401 0.545 0.058 0.068

(0.700) (0.832) (0.926)
Unit Gompertz 10.878 -17.751 -17.544 -13.530 1.447 0.208 0.110

(0.190) (0.253) (0.424)
Unit Weibull 14.242 -24.484 -24.277 -20.262 22.009 4.995 22.009

(3.7×10−10) (2.7×10−16) (9.3×10−6)
Topp-Leone 13.918 -25.836 -25.768 -23.725 0.593 0.088 0.089

(0.654) (0.649) (0.726)

8.2 Milk production data
The milk production dataset contains transformed total milk yield of 107 cows belong-
ing to the SINDI breed during their first lactation cycle. The data was used by Yousof
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Figure 5: Fitted PDFs (a) and fitted CDFs (b) of the trade share dataset.

et al. (2017), Nasiru et al. (2021) and Bhatti et al. (2021). From Table 7, the total
milk production dataset is negatively skewed (-0.3353) with a positive excess kurtosis
(2.6861).

Table 7: Descriptive statistics of Milk production dataset.
n Minimum Maximum x̄ M SD CS CK

107 0.0168 0.8781 0.4689 0.4741 0.1920 -0.3353 2.6861

From Figure 6, it can be observed that the TTT curve is concave with increasing
failure rate while boxplot also indicates approximately symmetric data.

The estimates of the parameter(s) of the fitted models with their corresponding
standard errors are displayed in Table 8.

Table 8: Estimates and standard errors associated with the model parameters for milk
production dataset.

Distribution Parameters Estimates Standard Error
LG ζ 1.6242 0.1418
Kumaraswamy a 2.3294 0.3055

b 2.7624 0.5549
UMOEE a 9.2403 4.1115

b 3.3844 0.5056
Unit Gompertz a 2.1193 0.8683

b 0.3878 0.1145
Unit Weibull a 0.9846 0.1015

b 1.5620 0.1036
Topp-Leone a 2.0802 0.2011
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Figure 6: Boxplots (left) and TTT plot (right) of the Milk production dataset.

Using the profile of the log-likelihood function in Figure 7 we ascertain the estimated
parameter as a true maxima.
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Figure 7: The profile log-likelihood plot for the milk production dataset.

In Tables 9, we observe that the LG distribution can be considered as the best
model for the Milk production dataset as the values of AIC, AICc and BIC statistics
are smaller for the proposed distribution. Also, the p-values of the AD, CV and KS
are highest for the proposed distribution.

Figure 8 suggests that LG distribution provides competitive fit for the milk pro-
duction dataset compared to the competing models.

8.3 Percentage of estimated eligible uninsured individuals
The performance of the parametric LG regression is assessed using real dataset. The
LG regression model is fitted and compared with the parametric unit Monsef regression
(PUMR) model formulated from the unit Monsef model (El-Monsef et al., 2016), the
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Table 9: Selection criteria and goodness-of-fit test values for the Milk production
dataset.

Distribution L AIC AICc BIC AD CV KS
LG 25.417 -48.947 -48.909 -46.275 1.418 0.162 0.073

(0.197) (0.356) (0.624)
Kumaraswamy 25.395 -46.789 -46.674 -41.444 3.718 0.580 0.076

(0.012) (0.025) (0.563)
UMOEE 15.026 -26.097 -25.982 -20.751 2.574 0.333 0.105

(0.045) (0.110) (0.190)
Unit Gompertz 5.489 -6.977 -6.862 -6.632 5.796 0.972 0.184

(0.001) (0.003) (0.002)
Unit Weibull 16.921 -29.842 -29.727 -24.497 19.926 4.231 0.3379

(5.6×10−6) (2.2×10−16) (4.8×10−14)
Topp-Leone 21.526 -41.052 -41.014 -38.380 4.327 0.726 0.179

(0.006) (0.001) (0.035)
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Figure 8: Fitted PDFs (a) and fitted CDFs (b) for the milk production dataset.

parametric unit Lindley regression (PULR) model formulated from the unit Lindley
model (Mazucheli et al., 2019) and the parametric Topp-Leone regression (PTLR)
model formulated from the Topp-Leone model (Topp and Leone, 2021). The PUMR,
PULR and PTLR are formulated by linking their respective parameters to a set of
covariates using a logarithmic link function. The PDF of the PUMR, PULR and
PTLR are given respectively as

fX(x) =
(exp(z

′

iθ))
3 exp

(
x

x−1 exp(z
′

iθ)
)

(x− 1)4[2 + exp(z
′
iθ)(2 + exp(z

′
iθ))]

,
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fX(x) =
(exp(z

′

iθ))
2 exp

(
x

x−1 exp(z
′

iθ)
)

(1− x)3(1 + exp(z
′
iθ))

,

fX(x) = 2 exp(z
′

iθ)x
exp(z

′
iθ)−1(1− x)(2− x)exp(z

′
iθ)−1.

The data was retrieved from https://data.world/johnsnowlabs/percentage-of-estimated-
eligible-uninsured-people. The interest is in the proportion of estimated eligible unin-
sured individuals in ten (10) states in the USA with family income at or below 138%
of the federal poverty level (fpl) and associated factors such as proportion of uninsured
males (z1) , proportion of uninsured females (z2) and proportion of uninsured people
in families with at least one working adult aged 18 to 64 (z3). Table 10 shows the es-
timates of the PLGR, PUMR, PULR and PTLR models. The results obtained shows
that the PLGR model provided the best fit to the dataset. Substituting the parameter
estimates obtained into the PLGR model we obtain

fpl = 6.2539− 7.7151z1 − 5.6538z2 + 2.4005z3.

Table 10: Parameter estimates of the fitted models with corresponding selection crite-
ria.

Model Parameter Parameter Estimates P-values

PLGR
θ0 6.254 6.946× 10−9 2ℓ = −15.998
θ1 -7.715 0.001 AIC = −7.998
θ2 -5.654 0.019 BIC = −6.788
θ3 2.401 0.269

PUMR
θ0 5.385 1.043× 10−7 2ℓ = −12.419
θ1 -7.511 1.824× 10−8 AIC = −4.419
θ2 -6.721 1.461× 10−5 BIC = −3.209
θ3 3.106 0.130

PULR
θ0 4.791 1.499× 10−5 2ℓ = 44.907
θ1 -7.689 6.449× 10−9 AIC = 52.907
θ2 -6.741 2.198× 10−5 BIC = 54.118
θ3 4.536 0.040

PTLR
θ0 8.928 9.632× 10−10 2ℓ = −12.179
θ1 -3.281 0.147 AIC = −4.179
θ2 -4.578 0.061 BIC = −2.969
θ3 -4.99 0.0914

The predictive ability of the fitted models is measured using the Cox-Snell residuals.
Figure 9 shows the probability-probability (P-P) plots of the Cox-Snell residuals com-
pared with the standard exponential distribution. Compared with other fitted models,
the PLGR model’s residuals are considerably closer to the diagonal line, suggesting a
better fit for the dataset. The goodness-of-fit statistics of the residuals in Table 11
used in the model diagnostics show that the PLGR model provides a better fit to the
dataset. The log-likelihood plots of the regression parameters are presented in Figure
10. The profile confirm the estimated parameters as real maxima.
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Figure 9: P-P plot of Cox-Snell residuals.

Table 11: Model diagnostics results.
Model KS statistic AD statistic CV statistic
PLGR 0.2274 0.6329 0.1204
PUMR 0.4714 2.5433 0.5165
PULR 0.7202 9.3904 1.8343
PTLR 0.5035 2.9229 0.6140
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Figure 10: The log-likelihood profiles for the regression parameters.
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9 Conclusions
The LG distribution and its properties are analyzed in this study. The LG distribu-
tion is found to be suitable for modeling datasets with approximately symmetric and
bathtub-shaped PDF plots, as well as bathtub and upside-down bathtub-shaped failure
rate functions. Six estimation methods were adopted to find the parameter estimates
and a simulation study conducted to assess their consistency. The LG distribution
was compared to five other distributions and was found to provide the best fit to two
lifetime datasets. Using the LG distribution, a parametric LG regression model was
proposed. When the proposed regression model was applied to a real-life dataset it
provided the best fit than some other existing regression models.
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