A simple method for determining the limiting distribution of sample central moments for two-point and Binomial distributions | ||
Journal of Statistical Modelling: Theory and Applications | ||
دوره 4، شماره 1، فروردین 2023، صفحه 1-10 اصل مقاله (469.41 K) | ||
نوع مقاله: Original Scientific Paper | ||
شناسه دیجیتال (DOI): 10.22034/jsmta.2023.20158.1100 | ||
نویسندگان | ||
Narges Abbasi* ؛ Narges Keshavarz؛ Masoud Yarmohammadi؛ Abdollah Saadatmand | ||
Department of Statistics, College of Science, Payame Noor University, Tehran, Iran | ||
چکیده | ||
Moments play an essential role in the characterization of statistical distributions and criteria such as dispersion, skewness, and kurtosis. This article is a dissection of the central moments of two-point and binomial distributions. First, we consider the Bernoulli distribution of the population and generalize the results. With a simple method, we present the condition that when the sample size is large, the structure of the sample central moment consists of random variables independent of standard normal or chi-square or a combination of both. In the obtained results, the role of points that have a probability of 1/2 is very influential in the limit distribution. | ||
کلیدواژهها | ||
Binomial distribution؛ Central moment؛ Convergence in probability | ||
آمار تعداد مشاهده مقاله: 221 تعداد دریافت فایل اصل مقاله: 204 |