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Keywords  Abstract 

Modeling of mineral potentials to identify promising districts in 
large exploration regions for detailed exploration operations is one 
of the main stages of exploration. In this research, a new approach 
based on a convolutional neural network is proposed for 
geochemical numerical modeling and mineral potential exploration. 
In the first step, in order to create the intelligent geochemical 
exploration modeling, the codes of the convolutional neural network 
algorithm and its evaluation indicators are programmed in MATLAB 
environment. After preprocessing of stream sediment geochemical 

data, including identification of outliers, estimation of censored data, and data normalization and 
standardization, factor analysis is performed in order to reduce the dimension of the study space, identify the 
main variables that control the concentration of deposit elements, and define factors. The variables used in 
modeling are the result of factor analysis of stream sediment data. The average accuracy of the mentioned 
modeling is obtained as 96%. In the second step, using the geostatistical method (universal kriging), the 
average accuracy of estimation points via ArcGIS software is calculated to be 75%. At the end of this study, 
the performances of numerical modeling using convolutional neural network and universal kriging as well as 
the support vector machine and its integration with the continuous genetic algorithm, which was studied in 
the previous article, are compared. The evaluation results show that machine learning algorithms are more 
accurate in identifying promising mineral districts compared to traditional methods. It is important to note 
that the results of this study are in good agreement with the results of field studies and mineralized sampling. 
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1. INTRODUCTION 

Deep learning has entered dramatically into 

many applications of artificial intelligence (AI), 

including object and speech recognition, noise  

reduction of speech signals, machine 

translation, and emotion analysis, and has 

provided the solution to many complex AI 

problems. Table 1 shows the history of the 

development of deep learning and its various 

applications [1]. 

In recent years, in-depth learning in the fields 

of mining engineering and earth sciences has also 

entered, the following are some of the studies 

conducted in these fields: 
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Table 1. Important milestones in the development of deep learning and its various applications [1]. 
 

Year Contributor Contribution 

300 BC Aristotle Introduced associationism, started the history of human's attempt to understand the brain. 

1873 Alexander Bain 
Introduced neural groupings as the earliest neural network models, inspired Hebbian 
learning rule. 

1943 McCulloch & Pitts Introduced the MCP model, which is considered the ancestor of the artificial neural model . 

1949 Donald Hebb 
Considered the father of neural networks, introduced the Hebbian learning rule, which lays 
the foundation of modern neural networks. 

1958 Frank Rosenblatt Introduced the first perceptron, which highly resembles the modern perceptron. 

1974 Paul Werbos Introduced backpropagation 

1980 Teuvo Kohonen Introduced self-organizing map 

1980 Kunihiko Fukushima Introduced neocogitron, which inspired convolutional neural network 

1982 John Hopfield Introduced Hopfield network 

1985 Hilton & Sejnowski Introduced Boltzmann machine 

1986 Paul Smolensky Introduced harmonium, which is later known as the restricted Boltzmann machine 

1986 Michael I. Jordan Defined and introduced recurrent neural network 

1990 Yann LeCun Introduced LeNet, showed the possibility of deep neural networks in practice 

1997 Schuster & Paliwal Introduced bidirectional recurrent neural network 

1997 
Hochreiter & 
Schmidhuber 

Introduced LSTM, solved the problem of vanishing gradient in recurrent neural networks 

2006 Geoffrey Hinton 
Introduced deep belief networks, also introduced layer-wise pretraining technique, opened 
current deep learning era. 

2009 
Salakhutdinov & 
Hinton 

Introduced deep Boltzmann machines 

2012 Geoffrey Hinton Introduced dropout, an efficient way of training neural networks 

Palafox et al. (2017) stated the large volume of 
high-resolution images that have been obtained 
by the Mars Reconnaissance Orbiter, has opened a 
new frontier for the automatic detection of earth 
shapes on the surface of Mars. In this study, 
convolutional neural networks (CNNs) have been 
used to identify a wide range of earth shapes on 
the surface of Mars [2]. Pires de Lima et al. (2019) 
emphasized that machine learning methods, 
including CNN, are not a substitute for the 
expertise of geologists, and specialists must 
provide the labels required to train the algorithms, 
in other words, machine learning methods are a 
means of applying the expertise of skilled 
geologists to large volumes of data [3]. 
Baraboshkin et al. (2019) used CNNs to reduce the 
time required in order to accurately describe 
rocks. They used color distribution analysis and 
feature extraction. In the mentioned study, the 
famous neural network architectures (Alexent, 
VGG, Googlenet, Resent) were used. The accuracy 
of Googlenet architecture was assessed at about 
95% of validation data, which examined 50 meters 
of drilling core in terms of rock type per minute 
[4]. Obianuju Lynda (2019) used CNN to classify 
satellite images. They started using this method, 
and the speed and accuracy of satellite image 
classification and subsequently production of 
geological or topographic maps increase [5]. 

Maitre et al. (2019) applied CNN to automatically 
identify mineral samples among suspended 
particles of natural sand. They stated that the 
results are very promising for the samples used in 
the study area, but for other areas, this 
identification has not been done correctly, which 
can be due to differences in mineralogy or taking 
pictures of the samples from different light 
sources. They concluded that it is essential to 
study more samples in order to extract the 
features [6]. Hassan et al. (2019) stated land use 
mapping by applying remote sensing data, due to 
similar spectra of different objects, is a challenge. 
For this purpose, CNN was employed to classify 
hyperspectral data [7]. Liu et al. (2020) used 
image segmentations to identify the ore particle 
size distribution. They expressed, however, that 
the adhesion of ore particles and dark areas in the 
explosion and conveyor belt images usually leads 
to low accuracy [8]. Fan et al. (2020) noted that the 
detection and classification of rocks are important 
issues in the prospecting phase; detection based 
on the study of thin sections, in addition to time 
and cost consumption, cannot guarantee accuracy. 
Also, it cannot be useful in field studies. In the 
mentioned study, a smart mobile phone's camera 
to take pictures of rocks and the linked software 
based on CNN were used to identify various 
lithologies with high accuracy and speed in field 



 

 

Geochemical exploration numerical modeling using… Analytical and Numerical Methods in Mining Engineering 

 

49 

 

studies [9]. Si et al. (2020) applied CNN for 
intelligent separation between coal and bedrock 
on the coal face. In the mentioned study, in order 
to prevent overfitting, three methods of “dropout”, 
“weight adjustment” and “batch normalization” 
have been used. Also “data augmentation” 
function has been applied to enhance visual data 
to improve neural network performance [10]. 
Razak and Jafarpour (2020) used CNN to 
aggregate subsurface flow data, identify geological 
scenarios and reduce uncertainty [11]. 
Madhuanand et al. (2021) used deep CNN to 
determine the surface of coal mines on Sentinel-2 
images. They noted, that coal mines are important 
sources of methane emissions, the second and 
most important greenhouse gas, and monitoring 
the emission of methane from coal mining 
requires determining the exact location of coal 
mines. The purpose of the aforesaid paper is to 
determine the surface of coal mines from satellite 
images using deep learning methods. For this 
purpose, different pre-trained architectures of 
CNN (VGG, Resonant, and Dancenet) have been 
applied also to learn CNNs, a list of well-known 
coal mines from different countries, and a set of 
13-band Sentinel-2 image segmentations entitled 
"Coal Mines" and "Non-Coal Mines" were prepared 
[12]. 

As can be seen in all the above studies, the 
input data into CNN are segmentations of images. 
However, in the studies conducted by Pryshliak et 
al. (2018) and Sharma et al. (2019), the data used 
were numeric data, but they applied the processes 
of normalization and conversion of numerical data 
into image data in order to prepare data to enter 
into CNN [13, 14]. 

In this study, in order to compare the accuracy 
of conventional and novel methods in classifying 
samples and identifying mineral potential zones, 
CNN (from machine learning methods) and 
geostatistics (from traditional methods) are used. 
CNN codes are programmed in a MATLAB 
environment. ArcMap software is used to 
accomplish the geostatistical methods. According 
to the data processing in the previous study 
(create stream maps, perform factor analysis, and 
establish fuzzy factor score maps), in this study, by 
mentioning a summary of the previous article, 
only its results are used. 

 

2. METHODOLOGY AND APPROACHES 

2. 1. Methodology 

CNN architecture includes convolution, 
pooling, fully connected, softmax, and 

classification layers. Also, in order to improve 
training, techniques such as using Rectified Linear 
Unit (ReLU) activation function, batch 
normalization, and dropout are considered. In 
convolution operations, important features of an 
image or a signal (for example edges) are 
automatically extracted according to the kernel 
used. Due to the use of a large number of filters in 
each convolution layer and the high 
computational volume, the pooling layer is applied 
to reduce the dimensions of the feature map 
produced by the convolution layer [15]. Up to this 
stage, feature extraction is performed. According 
to the type of data employed in this research, the 
data are entered into a fully connected layer. A 
fully connected layer identifies and classifies 
objects in the image [16]. To prevent overfitting, 
relevant functions are used in this layer. The final 
layer of fully connected in the CNN architecture 
has output neurons equal to the number of classes 
[15]. The ReLU nonlinear activation function is 
applied in between fully connected layers, the 
derivative of the ReLU function is 0 (If the value is 
negative) and 1 (if the value is positive). The 
output of ReLU does not have a maximum value (It 
is not saturated) and this helps gradient descent. 
The function returns 0 if the input is negative, but 
for any positive input, it returns that value back. 
After the fully connected layer is placed softmax 
layer, the output is probability values ranging 
from 0 to 1 and equal to the number of classes. In 
the classification layer, the highest probability of 
output of the Softmax layer is set to one and about 
other categories to zero [17]. 

The training process in the neural network is 
step-by-step. In this method, the data are entered 
into the network and after passing through 
different layers of the network by applying 
weights and nonlinear functions to the data, the 
result that is obtained at the end of the network 
may differ from the desired result, therefore, the 
weights in this algorithm should be corrected by 
the error back propagation method. One of the 
common algorithms employed to train deep 
networks is stochastic gradient descent (SGD). 
The slope of a function can be considered as the 
gradient. The gradient is used to gauge the change 
in the weights with respect to the inputs. The 
higher the gradient, the faster the model can learn 
from the inputs, and when the gradient eventually 
reaches 0, the learning process gradually stops. 

Sometimes, during back propagation, the 
weight change may be so small that the model 
does not learn anything new or learns at a 
negligible rate. This is a vanishing gradient 
problem. Another problem is the exploding 
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gradient where the weight assigned is very large 
as the derivative with respect to the input is huge. 

Thus, the network may remain as one of the 
minimum local points at the error level, or the 
network training speed may be too slow and the 
result will not be accurate enough, hence many 
network training employ techniques to improve 
the training process as follows: 

One of the techniques is batch normalization, 
in this method, normalization is performed in the 
middle layers of the network. In other words, the 
output of the layers is normalized again. Another 
method is to add dropout layers, in this way a 
number of neurons are randomly removed from 
the training process at each repetition or training 
step, so that, neurons are trained independently, 
as a result of which the network can discover the 
powerful features [18]. 

To evaluate the performance of machine 
learning algorithms, indicators such as accuracy, 
precision, recall, F1_Score, and AUC (the area 
under the receiver operating characteristic (ROC) 
curve) are generally used. Obviously, increasing 
the values of the mentioned indicators indicates 
the ability and accuracy of the designed model. 
The following parameters are used to define the 
indicators: 

 

TP (True Positives): The number of data in Class 
(1) that is correctly identified. 
 

FP (False Positives): The number of data that the 
classifier incorrectly places in class (1). 
 

FN (False Negatives): The number of data that the 
classifier incorrectly places in class (2). 
 

TN (True Negatives): The number of data in Class 
(2) that has been correctly identified. 
 

Accuracy is the ratio between the correctly 
classified samples to the total number of samples 
as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
            (1) 

 

Precision is the same classification accuracy 
that is defined in a particular class. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐶𝑙𝑎𝑠𝑠1) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                         (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐶𝑙𝑎𝑠𝑠2) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
                                       (3) 

Another factor is the recall or sensitivity, which 
is the ratio of the number of data correctly 
classified in class (1) to the total data actually in 
class (1) and in the case of class (2), this factor is 
called specificity. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝐶𝑙𝑎𝑠𝑠1) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                   (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝐶𝑙𝑎𝑠𝑠1) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                   (5) 

 
Another factor used for evaluation is F1_Score, 

which is obtained from the following equation: 

)callReprecision(

callReprecision2
Score_

1
F

+


=                                (6) 

The classifier is used to perform the prediction 
operation. One of the predict function outputs is 
label_predict which shows the class of each 
instance and is used for the confusion matrix plot. 
(a confusion matrix, that is known as an error 
matrix, each row of the matrix represents the 
instances in an actual class while each column 
represents the instances in a predicted class, or 
vice versa) and the second output is the 
score_label matrix that the probability of 
placement each instance in the corresponding 
class shows [19, 20]. To evaluate the CNN 
classifier performance (i.e. to determine the 
classifier's ability to classify positive images as 
positive and negative images as negative), the area 
under the ROC curve is used (AUC) and its value is 
between zero and one. In general, the rule of 
thumb for interpreting the AUC value is as follows 
[21, 22]: 

 

𝐴𝑈𝐶 =
1

2
(

𝑇𝑃

𝑇𝑁 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
)                          (7) 

 

AUC=0.5 No discrimination                                         (8) 

0.6≥AUC>0.5 Poor discrimination                           (9) 

0.7≥AUC>0.6 Acceptable discrimination              (10) 

0.8≥AUC>0.7 Excellent discrimination                 (11) 

AUC>0.9        Outstanding discrimination                (12) 
 

In this study, in addition to using CNN, the 
geostatistical method (kriging) is used to predict 
values in any geographical location. The kriging 
method fits a mathematical function to a certain 
number of points, or all points in a given radius, to 
determine the output value for each location. The 
kriging method is a multi-step process that 
includes data statistical analysis, variogram 
modeling, and creating a kriging surface. Kriging 
surfaces are the sum of an estimate for the trend 
surface (s) plus the kriging prediction for the 
residual process (s) [23]. This function is more 
appropriate when there is a spatial correlation or 
directional bias in the data. Experimental 
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semivariogram (h) is computed as half the 
average squared difference among the 
components of data pairs, according to the 
following equation (Isaacs, E. and Srivastava, M.R, 
1989): 
 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍(𝑥) − 𝑍(𝑥 + ℎ)]2

𝑁(ℎ)

𝑖=1

               (13) 

 

where N(h) is the number of pairs of data 
locations a vector h apart and Z(x) is the 
measurement at point x. Before using a 
semivariogram in estimation, it is necessary to fit 
a suitable mathematical model. In this study, the 
spherical model has the best performance and is 
defined as follows: 

 

𝛾(ℎ) = 𝐶0 + 𝐶 (
3

2

ℎ

𝑎
−

1

2

ℎ3

𝑎3
)       ,     0ℎ ≤ 𝑎      (14) 

 

𝛾(ℎ) = 𝐶0 + 𝐶                               ,     ℎ𝑎               (15) 
 

𝛾(ℎ0) = 0                                       ,     ℎ = 0            (16) 
 

where C0 is the nugget effect, a is the radius of 
influence (or range), and C is the difference 
between the nugget effect and sill. 

The result of geostatistical interpolation for 
estimating a variable at a non-sampled location Xp 
is Z(xp), which is defined as a linear combination 
of observational values in the neighborhood as 
follows: 

 

𝑍∗(𝑥𝑝) = ∑ 𝑖𝑍(𝑥𝑖

𝑛

𝑖=1

)          , ∑ 𝑖=1

𝑛

𝑖=1

                    (17) 

 
 

 
 
 

 
 

In the above equation, 𝑖  are kriging weights 
for observation points [24]. Different kriging 
methods are used to interpolate point data. 
Kriging is a random technique similar to inverse 
distance weighted in which a linear combination 
of weights at known points is used to predict 
unknown points. The kriging system is expressed 
in terms of covariances, which are generally 
obtained by estimating and modeling a 
semivariogram [25]. 

There are three fundamental types of kriging 
with the assumption of the global mean (z)of the 
underlying Gaussian process Z(x). They are 
simple, ordinary, and universal kriging. Simple 
kriging considers a known and constant mean, 
ordinary kriging assumes a global mean that is 
constant but unknown. Universal kriging 
supposes a variable global mean [26]. 

Universal kriging is considered as the 
following model:  

 
Z(s) =(s) + (s)                                                           (18) 

As can be observed in Fig. 1, the observed data 
are considered as solid circles and defined trend 
(s) as a second-order polynomial. From the 
polynomial difference with the original data, error 
(s) is obtained. The mean of the errors will be 
zero. In addition, a linear process or any number 
of other functions can be thought of as (s) or 
universal kriging. 

 

 
Figure 1. Universal kriging model [27]. 

 

As can be seen, one of the drawbacks of the 
geostatistical method is the definition of the 
spatial relationship between samples with a 
mathematical model called variogram. However, 
the mentioned method cannot always be used due 
to some assumptions, nature of real data, and the 
multiplicity of influential variables, hence the 
methods should be used that extract data features 
and learn them to identify the relationship 
between data. For this purpose, intelligent 
algorithms have been also used in this research. 

2. 2. Study Area 

Due to the possibility of collecting data, both 
numerical and visual data, the Gonabad region in 
this study has been selected. This region with an 
area of 995 square kilometers includes two zones 
Helali (in the northwest) and Kalateh Ahani (in the 
southeast) in Khorasan Razavi province (Fig. 2). 
The age of the rock units in the study area is 
related to Paleozoic to Cenozoic periods. Major 
rock units in the Paleozoic include limestone and 
quartzite sandstone. In the Mesozoic period, the 
Shemshak formation has the most widespread in 
the region. The main members of this formation 
include volcanic units with intermediate layers, 
sandstone, slate, and black shale. In terms of 
structural geology, folds, faults, and dikes are 
abundant in the mentioned formation, which in 
some areas has caused alteration and 
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mineralization. During the Cenozoic, the main 
rock units include basalt, andesite, rhyolite, and 
dacite, which are the result of magma penetration 

with acidic, intermediate, and mafic compositions 
and are sometimes covered by Quaternary layers 
including clay, marl, silt, and gypsum. 

 

Figure 2. General schematic of anomalous samples via factor analysis on the geological map (1.250000) in the 
Gonabad area (A: Helali zone, B: Ahani Zone). 

 

 

A: Helali zone 
B: Ahani zone 
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2. 3. Implementing Method 

In this study, 580 samples of stream sediments 
have been studied, of which 340 samples are 
related to the Helali zone and the rest is related to 
the Ahani zone. ICP_OES analysis for 
determination of 35 elements content in various 
samples is applied. In the preprocessing phase, the 
following steps are performed, identification of 
outliers using the Tukey box, estimation of 
censored data using Cohen's method, data 
normalization, and standardization by calculating 
of enrichment index. Then, factor analysis is used 
to identify the main variables that control the 
concentration of deposit elements and reduce the 
dimensionality of a set of data. In performing the 
mentioned analysis, all variables (elements) enter 
into the analysis process, and eventually, the 
number of factors reduces to seven factors with 
special values of more than one. According to the 
changes in factor scores at the sampling locations, 
the fuzzy factor score [28] of each sample is 
calculated so that data values fall between zero 
and one. Using the fuzzy weight of the samples, the 
probability maps of the mineral potential obtained 
from the factor analysis are drawn and anomalous 
areas are determined. Fig. 2 shows the fuzzy factor 
scores maps related to the distribution of 
anomalous samples of each factor that has been 
superposed on the geological map. 

In order to perform intelligent exploration 
modeling in classifying samples and determining 
geochemical anomaly areas, the codes of the CNN 
algorithm are written in the MATLAB 
environment which the program code is present in 
Appendix. 

Definition of the input data file is the most vital 
part. The number of rows and columns is equal to 
the number of samples and attributes 
(respectively) and the last column includes the 
targets. The features used, are a number of factors, 
and one feature is related to the lack of 
mineralization. The data applied are fuzzy factor 
scores and the target is identified anomalies 
related to each factor. In setting the input file, the 
number of anomalous and non-anomalous 
samples are selected in equal numbers. Also, 75%, 
10%, and 15% of data are training, validation, and 
test data respectively. Data are selected with 
random permutations using the randperm 
function. In this research, CNN architecture 
includes fully connected, softmax, and 
classification layers and the ReLU activation 
function. CNN training is also performed by the 
SGD method. In order to improve network training 
in MATLAB, the functions of normalizing 

symmetrically and dropout are used. According to 
the extraction of seven factors in factor analysis 
and one feature related to the lack of 
mineralization, eight categories are defined. 
Determining the proper number of hidden 
neurons is based on the trial rule that is defined 
with minimal error and highest accuracy, also size 
of the input and output layers should be 
considered. To evaluate the ability and accuracy of 
modeling using CNN, indicators such as accuracy, 
precision, recall, F1_Score, and AUC are employed. 
The relevant codes are programmed in the 
MATLAB environment. 

Also, to compare the accuracy of intelligent 
exploration modeling with the geostatistical 
method, the universal kriging method is applied. 
The first step in using the kriging method is to 
check out the normality of the data. For this 
reason, the logarithm of the data is considered. 
The kriging outputs are predicted values and error 
estimation values for each sample which are 
applied to evaluate the performance of the 
method. 

3. RESULTS AND CONCLUSIONS 

3. 1. Results And Discussion 

Due to the large exploration region and high 
sampling density, it is not possible to determine 
the promising zones using traditional methods in 
terms of time and cost consumption, hence in this 
research, intelligent exploration modeling is 
employed. The evaluation results of geochemical 
numerical modeling using the CNN algorithm via 
MATLAB software are indicated in Table 2. 

Table 2. Results of numerical modeling by CNN 
algorithm (MATLAB output) 

 
********************* 

Results For Simple Create: Test Data 

Accuracy: 96.1039 

Precision: [100   90    100    91.6667    100    100    100    95.4545] 

Recall: [100   100   100   91.6667   100   100   66.6667    95.4545] 

F1_Score:[100   94.7368    100   91.6667  100  100  80    95.4545] 

AUC: [1    1    1    0.9987    1    1    1    0.9983] 

*********************** 

Table 3 shows the confusion matrix obtained 
from numerical modeling of CNN on geochemical 
data in the study area. As can be seen, out of the 
total samples, 77 samples have been selected for 
test data, of which 74 samples have been correctly 
identified by the algorithm in the relevant classes. 
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Table 3. Confusion matrix obtained from numerical 
modeling of CNN on geochemical data. 

 

Fig. 3 indicates the ROC curve achieved from 
CNN modeling. The curve is located above the 
bisector line of the diagram. The average AUC is 
99%, which indicates outstanding discrimination 
of the modeling algorithm. 

 

Figure 3. ROC curve achieved from numerical 
modeling of CNN on geochemical data. 

Exploration studies based on geostatistics are 
also used to compare the accuracy of the methods. 
According to be variable global mean, universal 
kriging is utilized. Fig. 4 shows fuzzy factor scores 
prediction maps using the universal kriging 
method. The aim of the applying universal kriging 
method is to predict Z(x) at an unsampled area. 
Using ArcMap software, prediction errors can 

easily be accessed for the layer created by the 
kriging method for each of the samples. The mean 
error can be generalized to identify all samples, 
both anomalous and non-anomalous samples. 
Thus, the average accuracy of this method in 
identifying the class of samples can be 
approximated. 

 

 

 

 

Figure 4. Prediction map by kriging (A: Helali zone, 
B: Ahani Zone). 

A scatter diagram is the easiest way to 
graphically represent the relationship between 
two quantitative variables which is as an output of 
the kriging method implementation. The highest 
accuracy of estimation is when the fitted line to 
data has an angle of 45° or near to it. After 

A: Helali zone 

B: Ahani zone 
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determining the correlation among the variables, 
the behavior of unknown variables (measured or 
predicted) can be easily predicted by other 
variables. Fig. 5 shows the scatter diagrams of the 
predicted vs. measured values. Prediction means 
the model response. As can be seen, the y variable 
(predicted) tends to increase as the x variable 
(measured) increases. Hence, there is a positive 
correlation among the variables. 

 

 

 

 

Figure 5. Scatter diagram of the predicted vs. 
measured values. (A: Helali zone, B: Ahani Zone). 
 

As can be seen in Table 4, the average accuracy 
of numerical modeling via the CNN algorithm in 
identifying specimens class on test data is 
calculated as 96%. According to previous studies, 
the average accuracy of the support vector 
machine algorithm is 98% [29] and the average 
accuracy of the geostatistical method is 75%. 

 

Table 4. Comparison accuracy of the geostatistical 
method, support vector machine algorithm, and its 
integration with genetic algorithm and convolution 
neural network. 
 

Average accuracy 

of numerical 

modeling via CNN 

in identifying 

samples class (Test 

data) 

Average accuracy 

of support vector 

machine and its 

integration with 

genetic algorithm 

in identifying 

samples class (Test 

data) 

Average 

accuracy of 

geostatistical 

method in 

identifying 

samples class 

 

96% 98% 75% 
 

3. 2. Conclusions 

By superimposing the geological map and the 
factor analysis map (Figs. 2), it can be seen that 
anomalies are located in the Helali zone, mainly in 
bodies of igneous rocks (andesite, basalt, rhyolite, 
dacite, green tuff, granite, granodiorite, and 
volcanic rocks), in Ahani zone in granite and 
microgranite and in Shemshak formation in shale, 
sandstone, limestone, black shale, and quartzite 
sandstone, which can be due to numerous dykes 
and faults in the region and intrusion of magmatic 
fluids into the fractures. In terms of 
mineralization, there is a possibility of significant 
reserves in the black shales that are geochemical 
dams and are caused by the accumulation of 
minerals and play a key role in the prospecting 
and exploration of mineral deposits. 
 

It is noteworthy that the location of anomalous 
samples from factor analysis has a good overlap 
with the location of mineralized sampling in field 
studies (Fig. 2). 

 

This article is the results section of the 
research related to Miss Mandana Tahmooresi's 
dissertation that has been done in the Mahallat 
Branch, Islamic Azad University [30]. 
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APPENDIX: NUMERICAL MODELING OF 
CONVOLUTIONAL NEURAL NETWORK IN 
MATLAB 
 

Clc; 
Clear; 
close all; 
%% Classification Usin Deep learning CNN 
%% Laod and Divide Data 
Gonabad=xlsread('E:\Mahallat\Mahallat\Resale_
mahallat\word\My 
paper\Yazd\Classification\DataSets\dataentry.xls'); 
save('E:\Mahallat\Mahallat\Resale_mahallat\wor
d\My 
paper\Yazd\Classification\DataSets\Gonabad.mat'); 
ListFolder = 
{'Gonabad.mat','fisheriris.mat','d166_9598_clean2_
2.mat'}; 
NameDataSet = ListFolder{1}; 
[dataTrain,dataValid,dataTest] = 
LoadDivideData(NameDataSet); 
 %% Set Layers and Train Options 
numFeatures = size(dataTrain.Inputs,2); 
numClasses = numel(unique(dataTrain.Targets)); 
layers = CreateLayers(numFeatures,numClasses); 
%% Set Options 
Ir = 1e-2; 
MaxE = 500; 
MinB = 12; 
options = 
SetTrainOptions(Ir,MaxE,MinB,dataValid); 
 %% Train NetWorks 
[netTrain,info] = 
trainNetwork(dataTrain.Inputs,dataTrain.Targets,
layers,options); 
%% Prediction and Evaluation 
% Train Data 
Labels = dataTrain.Targets; 
ResultsTrain = EvaluatePlot(netTrain,... 
    dataTrain,Labels,'Simple Create: Train'); 
% Test Data 
Labels = dataTest.Targets; 
ResultsTest = EvaluatePlot(netTrain,... 
    dataTest,Labels,'Simple Create: Test'); 
******* 
function [TrainData,ValidData,TestData] = 
LoadDivideData(name) 
name = ['DataSets/',name]; 
data = importdata(name); 
if isstruct(data) 
    data = data.data; 
end 
VaNum = round(NSamples * VaPercent / 100); 
R = randperm(NSamples); 
% load RFH 
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trIndex = R(1 : TrNum); 
tvIndex = R(TrNum + 1:TrNum + VaNum); 
tsIndex = R(1 + TrNum + VaNum : end); 
 TrainData.Inputs = Inputs(trIndex,:); 
TrainData.Targets = Targets(trIndex); 
ValidData.Inputs = Inputs(tvIndex,:); 
ValidData.Targets = Targets(tvIndex); 
 TestData.Inputs = Inputs(tsIndex,:); 
TestData.Targets = Targets(tsIndex); 
end 
********** 
function layers = 
CreateLayers(numFeatures,numClasses) 
% convolution2dLayer(2,2,'Name','conv') 
numHiddenNeuron = 20; 
layers = [ 
featureInputLayer(numFeatures,'Normalization','r
escale-symmetric') 
            fullyConnectedLayer(numHiddenNeuron) 
            reluLayer ('Name', 'sig') 
            fullyConnectedLayer(numClasses) 
            softmaxLayer 
            classificationLayer('Name','classification')]; 
end 
%             reluLayer('Name','relu') 
%             leakyReluLayer 
********** 
function Results = 
EvaluatePlot(netTrain,data,Labels,Name) 
% Prediction 
[YPred,scores] = classify(netTrain,data.Inputs); 
Lau = unique(Labels); 
groups = zeros(size(YPred)); 
groupshat = zeros(size(YPred)); 
for i = 1:numel(Lau) 
    ID = ismember(YPred,Lau(i)); 
    groupshat(ID) = i; 
        ID  = ismember(Labels,Lau(i)); 
    groups(ID) = i; 
end 
 confmat = confusionmat(groups,groupshat); 
Results = PrecisionRecall(confmat); 
 [Targets,Groups] = 
H_MultiClassCMROC(groups',groupshat'); 
figure,plotconfusion(Targets,Groups) 
title(['CM for ',Name,' Data']) 
for i = 1:size(confmat,1) 
[~,~,~,AUC(i)] = 
perfcurve(Targets(i,:),scores(:,i)',1); 
end 
Results.AUC = AUC; 
disp(['Results For ',Name,' Data']) 
disp(Results) 
disp(' **************************') 
figure,plotroc(Targets,scores') 
title(['ROC for ',Name,' Data']) 
end 

*************************** 
function [Targets,Groups] = 
H_MultiClassCMROC(Targets,Groups) 
Tu = unique(Targets); 
Temp1 = zeros(size(Targets)); 
Temp2 = Temp1; 
for i = 1:numel(Tu) 
  Ind1 = find(Targets==Tu(i)); 
  Temp1(Ind1) = i; %#ok 
    Ind2 = find(Groups==Tu(i)); 
  if isempty(Ind2) 
      Ind2=Ind1(1); 
  else 
  Temp2(Ind2) = i;  %#ok 
  end 
  end 
Targets = full(ind2vec(Temp1)); 
Groups = full(ind2vec(Temp2)); 
end 
 function Results = PrecisionRecall(confmat) 
nC = size(confmat,1); 
for i = 1:nC 
Precision(i) = confmat(i,i)/sum(confmat(:,i))*100; 
Recall(i) = confmat(i,i)/sum(confmat(i,:))*100; 
F1_Score(i) = 
2*Precision(i)*Recall(i)/(Precision(i)+Recall(i)); 
end 
 Accuracy = sum(diag(confmat))/sum(confmat(:)); 
Results.Accuracy = 100*Accuracy; 
Results.Precision = Precision; 
Results.Recall = Recall; 
Results.F1_Score = F1_Score; 
% disp(Results) 
End 
********** 
function options = 
SetTrainOptions(Ir,MaxE,MinB,dataValid) 
Validation = {dataValid.Inputs,dataValid.Targets}; 
options = trainingOptions('sgdm', ... 
    'MiniBatchSize',MinB, ... 
    'MaxEpochs',MaxE, ... 
     'InitialLearnRate',Ir,... 
    'LearnRateSchedule','piecewise',... 
    'LearnRateDropFactor',0.7, ... 
    'LearnRateDropPeriod',50, ... 
    'ValidationData',Validation, ... 
    'ValidationFrequency',50, ... 
    'ValidationPatience',Inf, ... 
    'Shuffle','every-epoch',... 
    'Verbose',0, ... 
    'Plots','training-progress',... 
    'ExecutionEnvironment','cpu');%'none','training-
progress' 
% 'ValidationData',augimdsValidation, ... 
% 'ValidationFrequency',3, ... 
End

 


