ارائه نسخه الگوریتم سینوس کسینوس چندگانه در حل مسئله انتخاب ویژگی | ||
پژوهش های نظری و کاربردی هوش ماشینی | ||
مقاله 6، دوره 1، شماره 1، فروردین 1402، صفحه 46-59 اصل مقاله (614.67 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/abmir.2022.2701 | ||
نویسندگان | ||
فاطمه سعادت جو* 1؛ سهیل اقبالی2؛ علیرضا پورسلیمان2 | ||
1گروه کامپیوتر، دانشکده فنی و مهندسی، دانشگاه علم و هنر، یزد، ایران. | ||
2دانشجوی کارشناسی ارشد گروه مهندسی کامپیوتر، دانشگاه علم و هنر، یزد، ایران | ||
چکیده | ||
از آنجا که تمام ویژگیهای دادهها برای یافتن دانشی که در دادهها نهفته است مهم و حیاتی نیستند؛ کاهش ابعاد داده یکی از مباحث بااهمیت است. ازاینرو در این مقاله روشی جدید با استفاده از الگوریتم سینوس کسینوس با رویکرد بهینهسازی چندگانه در حوزه انتخاب ویژگی ارائه میشود. روش پیشنهادی در مدل انتخاب ویژگی رپر ارائهشده است و دو مرحله دارد که شامل مرحله انتخاب ویژگی با استفاده از الگوریتم سینوس کسینوس چندگانه و مرحله طبقهبندی جوابهای ممکن در الگوریتم سینوس کسینوس با روش نزدیکترین همسایه توسعهیافته، است. روش پیشنهادی بر روی مجموعه داده استاندارد UCI در مجموعه دادههایی با ابعاد مختلف آزمایش شده است. مقایسه روش پیشنهادی با روشهای بهینهسازی چندگانه و تکگانه، نشان میدهد که این روش نسبت به روشهای بهینهسازی تکگانه، دارای کارایی بالاتری بوده ( یعنی با دقت بیشتری به مجموعه ویژگی بهینه میرسیم) و نسبت به روشهای بهینهسازی چندگانه نیز با اختلاف کمی، نتایج بهتری در انتخاب بهترین مجموعه ویژگی به صورت چندگانه را داشته است. | ||
کلیدواژهها | ||
الگوریتم سینوس کسینوس؛ انتخاب ویژگی؛ بهینهسازی چندگانه؛ انتخاب ویژگی رپر | ||
عنوان مقاله [English] | ||
Provide version of multimodal Sine Cosine Algorithm in solving feature selection problem | ||
نویسندگان [English] | ||
Fatemeh Saadatjoo1؛ Soheil Eghbali2؛ Alireza Poursoleyman2 | ||
1Computer Engineering Department, Science and Arts University, Yazd, Iran. | ||
2Computer Engineering Department, Science and Arts University, Yazd, Iran. | ||
چکیده [English] | ||
One of the problems with high-dimensional data is choosing the best features, because all the features of the data to find the knowledge that the data lies are not important and vital. For this reason, reducing the size of the data is one of the important issues. Hence in This research has tried a new method using sine cosine algorithm with multiple optimization approach in the Feature selection field. In fact, the innovation of this research is in providing a way to obtain the whole set of appropriate features, which for the first-time sine cosine algorithm has been improved. The proposed method is presented in the wrapper feature selection model and has two steps, which include the feature selection step using the multimodal sine cosine algorithm and the classification step of possible solutions obtained from sine cosine algorithm by the extended nearest neighbor classification method. The proposed method was tested on data sets from uci with different dimensions. The results of the proposed method along with the results of other methods including multimodal optimization and single optimizations are compared and it is observed that the proposed method compared to the single optimization methods, has higher efficiency and compared to multimodal optimization methods, it had better result with a slight difference. In general, the proposed method has been able to reduce the number of features by more than 5% compared to other methods and the average accuracy of the classification compared to the best results of other methods has improved by an average of 2%. | ||
کلیدواژهها [English] | ||
Sin Cosine Algorithm, Feature Selection, Multimodal Optimization, Wrapper Method | ||
مراجع | ||
[1] Abualigah, L. M., & Dulaimi, A. J. (2021). A novel feature selection method for data mining tasks using hybrid Sine Cosine Algorithm and Genetic Algorithm. Cluster Computing, 24(3), 2161–2176.
[2] Ahmed, R., Nazir, A., Mahadzir, S., Shorfuzzaman, M., & Islam, J. (2021). Niching grey wolf optimizer for multimodal optimization problems. Applied Sciences, 11(11), 4795.
[3] Du, W., Ren, Z., Chen, A., & Liu, H. (2021). A Knowledge Transfer-Based Evolutionary Algorithm for Multimodal Optimization. In 2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 1953–1960).
[4] Hancer, E., Xue, B., & Zhang, M. (2020). A survey on feature selection approaches for clustering. Artificial Intelligence Review, 53(6), 4519–4545.
[5] Hans, R., & Kaur, H. (2020). Hybrid binary Sine Cosine Algorithm and Ant Lion Optimization (SCALO) approaches for feature selection problem. International Journal of Computational Materials Science and Engineering, 9(1), 1950021.
[6] Harrison, O. (2018). Machine learning basics with the k-nearest neighbors algorithm. Towards Data Science, 11.
[7] Hussain, K., Neggaz, N., Zhu, W., & Houssein, E. H. (2021). An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection. Expert Systems With Applications, 176, 114778.
[8] Kamyab, S., & Eftekhari, M. (2016). Feature selection using multimodal optimization techniques. Neurocomputing, 171, 586–597.
[9] Kumar, L., & Bharti, K. K. (2021). A novel hybrid BPSO–SCA approach for feature selection. Natural Computing, 20(1), 39–61.
[10] Lu, H., Sun, S., Cheng, S., & Shi, Y. (2021). An adaptive niching method based on multi-strategy fusion for multimodal optimization. Memetic Computing, 13(3), 341–357.
[11] Mirjalili, S. (2016). SCA: A Sine Cosine Algorithm for solving optimization problems. Knowledge Based Systems, 96(96), 120–133.
[12] Neggaz, N., Ewees, A. A., Elaziz, M. E. A., & Mafarja, M. M. (2020). Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Systems With Applications, 145, 113103.
[13] Nekouie, N., & Yaghoobi, M. (2016). A new method in multimodal optimization based on firefly algorithm. Artificial Intelligence Review, 46(2), 267–287.
[14] Nguyen, B. H., Xue, B., & Zhang, M. (2020). A survey on swarm intelligence approaches to feature selection in data mining. Swarm and Evolutionary Computation, 54, 100663.
[15] Pandit, A. A., Pimpale, B., & Dubey, S. (2020). A Comprehensive Review on Unsupervised Feature Selection Algorithms, 255–266.
[16] Pereira, D. G., Afonso, A., & Medeiros, F. M. (2015). Overview of Friedman’s test and post-hoc analysis. Communications in Statistics-Simulation and Computation, 44(10), 2636-2653. [17] Ros, F., & Guillaume, S. (2020). From Supervised Instance and Feature Selection Algorithms to Dual Selection: A Review, 83–128.
[18] Sekhar, P. R., & Sujatha, B. (2020). A Literature Review on Feature Selection using Evolutionary Algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1–8).
[19] Sheng, W., Wang, X., Wang, Z., Li, Q., & Chen, Y. (2021). Adaptive memetic differential evolution with niching competition and supporting archive strategies for multimodal optimization. Information Sciences, 573, 316–331.
[20] Tang, B., & He, H. (2015). ENN: Extended Nearest Neighbor Method for Pattern Recognition [Research Frontier]. IEEE Computational Intelligence Magazine, 10(3), 52–60.
[21] Wan, Y., Ma, A., Zhong, Y., Hu, X., & Zhang, L. (2020). Multiobjective Hyperspectral Feature Selection Based on Discrete Sine Cosine Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 58(5), 3601–3618.
| ||
آمار تعداد مشاهده مقاله: 411 تعداد دریافت فایل اصل مقاله: 402 |