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Abstract: A new generalized family of distributions called the odd power generalized
Weibull-G family of distributions is developed. Some properties of the new family of dis-
tributions including quantile function, moments, incomplete and probability weighted
moments, distribution of the order statistics and Rényi entropy are derived. Estimation
of model parameters using maximum likelihood estimation technique and simulation
study to examine the bias and mean square error are discussed. Applications to real
data sets to illustrate the applicability of the generalized family of distributions is also
given.
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1 Introduction
Many statistical distributions such as Weibull, Lindley, Lomax, log-logistic, Pareto,
Rayleigh distributions are widely used for fitting data in several areas such as medicine,
engineering, finance, economics, and agriculture. However, in many practical situa-
tions, these statistical distributions do not provide adequate fit in modelling real life
data. Thus, there is clear need for the generalizations of these distributions to gain
flexibility. Statisticians proposed new families of distributions that extend the well
known standard distributions by adding one or more parameters. Some of the recent
known families are: generalized odd Weibull-G by Korkmaz et al. (2018), exponen-
tiated odd log-logistic-G by Alizadeh et al. (2018), Topp Leone odd Lindley-G by
Reyad et al. (2018), odd Lomax-G by Cordeiro et al. (2019), Marshall-Olkin alpha
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power-G by Nassar et al. (2019), odd inverse Pareto-G class by Aldahlan et al. (2019),
the Nadarajah Haghighi Topp Leone-G family of distributions by Reyad et al. (2019),
the odd exponentiated half-logistic-G family of distributions by Afify et al. (2017), a
new Weibull-X family of distributions by Ahmad and Hamedan (2018), exponentiated
Weibull-H by Cordeiro et al. (2017) among others.

Lai (2013) described the power generalized Weibull (PGW) distribution as one of
the Weibull modifications that can give rise to non-monotonic hazard rate functions
of various shapes such as a bathtub, upside-down bathtub (unimodal) or a modified
bathtub. Maximum likelihood estimates (MLEs) of parameters and application of
PGW distribution using Efron (1988) head-and-neck cancer clinical trial data was
presented by Nikulin and Haghighi (2009). Kumar and Dey (2017) derived recurrence
relations for single and product moments of order statistics from power generalized
Weibull distribution. Voinov et al. (2013) constructed modified chi-squared tests based
on maximum likelihood estimates (MLEs). Last but not least the generalized order
statistics (GOS) of the PGW distribution was presented by Kumar and Jain (2018).

A random variable T is said to follow the power generalized Weibull distribution if
its cdf and pdf are given by

F (t;α, β) = 1− exp
(
1− [1 + tα]

β
)
,

f(t;α, β) = αβtα−1(1 + tα)β−1 exp
(
1− (1 + tα)β

)
,

respectively, for α, β > 0. Alzaghal et al. (2013) defined the T -X family of distributions
given by

F (x) =

∫ W (G(x))

a

r(t)dt.

Here, we consider the transformation W (G(x; ξ)) = G(x;ξ)
1−G(x;ξ) for the baseline cdf

G(x; ξ).

Motivation for developing this new model is the advantages presented by this ex-
tended distribution with respect to having a hazard function that exhibits both mono-
tone and non-monotone shapes, as well as the versatility and flexibility of power gen-
eralized Weibull distributions in general, in the modeling lifetime data.

The results in this note are organized in the following manner. Section 2 contain
the new OPGW-G family of distributions and its sub-families, hazard function, special
cases and expansion of the density. In Section 3, quantile function, moments and
generating function, probability weighted moments, the distribution of order statistics
and Rényi entropy are presented. Section 4 contain the estimation of the parameters of
the OPGW-G family of distributions via the method of maximum likelihood, followed
by a Monte Carlo simulation study to examine the bias and mean square error of the
maximum likelihood estimates in Section 5. Some applications to real data sets are
given in Section 6, followed by some concluding remarks in Section 7.



123 T. Moakofi, B. Oluyede, F. Chipepa, B. Makubate

2 The model, sub-families, reliabibility measures and
special cases

The derivation of some of the statistical properties of the odd power generalized
Weibull-G (OPGW-G) family of distributions including sub-families, hazard function,
reliability measures and expansion of the density are presented in this section.

2.1 The model
The cumulative distribution function (cdf) and probability density function (pdf) of
the proposed odd power generalized Weibull-G (OPGW-G) family of distributions are
given by

F (x;α, β, ξ) =

∫ G(x;ξ)
1−G(x;ξ)

0

αβtα−1(1 + tα)β−1 exp
(
1− (1 + tα)β

)
dt

= 1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)
(1)

f(x;α, β, ξ) = αβ

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β−1(
G(x; ξ)

1−G(x; ξ)

)α−1

× exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)
g(x; ξ)

(1−G(x; ξ))
2 , (2)

for α, β > 0 and parameter vector ξ. The hazard rate function of the OPGW-G family
of distributions is given by

hF (x;α, β, ξ) =
f(x;α, β, ξ)

F (x;α, β, ξ)

= αβ

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β−1(
G(x; ξ)

1−G(x; ξ)

)α−1

×g(x; ξ)(1−G(x; ξ))
−2

.

To check the identifiability of the new family, we let θ1 = (α1, β1) and θ2 = (α2, β2),
Thus, we have

fθ1 = α1β1

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α1
]β1−1(

G(x; ξ)

1−G(x; ξ)

)α1−1

× exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α1
]β1
)

g(x; ξ)

(1−G(x; ξ))
2 , (3)

fθ2 = α2β2

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α2
]β2−1(

G(x; ξ)

1−G(x; ξ)

)α2−1

× exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α2
]β2
)

g(x; ξ)

(1−G(x; ξ))
2 .
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Then
fθ1 = fθ2 ⇔ a1 − a2 = 0, (4)

where
a1 = α1β1

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α1
]β1−1 (

G(x;ξ)
1−G(x;ξ)

)α1−1

exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α1
]β1
)

,

a2 = α2β2

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α2
]β2−1 (

G(x;ξ)
1−G(x;ξ)

)α2−1

exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α2
]β2
)
.

Thus, expression (4) is equal to zero for almost all G(x; ξ) when all its coefficients are
equal to zero, which is only possible when α1 = α2, β1 = β2. Since all the parameters
are restricted to be greater than zero, we conclude that the new family of distributions
is identifiable: fθ1 = fθ2 ⇔ θ1 = θ2.

2.2 Sub-families of OPGW-G family of distributions
In this subsection, some sub-families of the OPGW-G family of distributions are pre-
sented.

• When β = 1, we obtain the Weibull-G (W-G) family of distributions (Bour-
guignon et al., 2004) with the cdf

F (x;α, ξ) = 1− exp

(
−
(

G(x; ξ)

1−G(x; ξ)

)α)
,

for α > 0, and parameter vector ξ.

• If α = 1, we obtain the odd Nadarajah Haghighi-G (ONH-G) family of distribu-
tions with the cdf

F (x;β, ξ) = 1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)]β)
,

for β > 0, and parameter vector ξ. This is a new family of distributions.

• If α = β = 1, we obtain the odd exponential-G (OE-G) family of distributions
with the cdf

F (x; ξ) = 1− exp

(
−
(

G(x; ξ)

1−G(x; ξ)

))
,

for parameter vector ξ.

• If β = 1, α = 2 we obtain the odd Rayleigh-G (OR-G) family of distributions
with the cdf

F (x; ξ) = 1− exp

(
−
(

G(x; ξ)

1−G(x; ξ)

)2
)
,

for parameter vector ξ.



125 T. Moakofi, B. Oluyede, F. Chipepa, B. Makubate

2.3 Asymptotes

In this subsection, we give some asymptotes for cdf, pdf and hazard rate functions of
the OPGW-G family of distributions. To easily find asymptotes we write (1) as

F (x;α, β, ξ) = 1− exp

1−

[
1 +

(
1−G(x; ξ)

G(x; ξ)

)−α
]β.

As x → 0, we have

F (x;α, β, ξ) = 1− exp

1−

[
1 +

(
1

G(x; ξ)
− 1

)−α
]β

∼ 1− exp
(
1− [1 + (G(x; ξ))

α
]
β
)
,

f(x;α, β, ξ) ∼ αβ [1 + (G(x; ξ))
α
]
β−1

(G(x; ξ))
α−1

exp
(
1− [1 + (G(x; ξ))

α
]
β
)
,

h(x;α, β, ξ) ∼ αβ [1 + (G(x; ξ))
α
]
β−1

(G(x; ξ))
α−1

.

The asymptotes for cdf, pdf and hazard rate functions of the OPGW-G family of
distributions as x → ∞, are given by

1− F (x;α, β, ξ) = exp

1−

[
1 +

(
1−G(x; ξ)

G(x; ξ)

)−α
]β

=

∞∑
i=0

(
1−

[
1 +

(
1−G(x;ξ)
G(x;ξ)

)−α
]β)i

i!

≈ 1−

1−

[
1 +

(
1−G(x; ξ)

G(x; ξ)

)−α
]β .

Consequently, as x → ∞,

1− F (x;α, β, ξ) ∼
[
1 + (1−G(x; ξ))

−α
]β

,

f(x;α, β, ξ) ∼
αβg(x; ξ)

[
1 + (1−G(x; ξ))

−α
]β−1

(1−G(x; ξ))
α+1 ,

h(x;α, β, ξ) ∼ αβg(x; ξ)

(1−G(x; ξ))
α+1

[
1 + (1−G(x; ξ))

−α
]β .
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2.4 Series expansion of density function
In this section, we present the series expansion of the OPGW-G density function.
Applying the following expansions

exp(z) =

∞∑
k=0

zk

k!
, (a+ b)n =

∞∑
j=0

(
n

j

)
ajbn−j ,

(1− z)−k =

∞∑
l=0

Γ(k + l)

Γ(k)l!
zl, (1− z)a−1 =

∞∑
k=0

(−1)k
Γ(a)

Γ(a− k)k!
zk,

for |z| < 1 and k > 0, the pdf of OPGW-G family of distributions can be written as

f(x;α, β, ξ) =

∞∑
w=0

Cw+1hw+1(x; ξ), (5)

where hw+1(x; ξ) = (w+1)[G(x; ξ)]wg(x; ξ) is the exponentiated-G (E-G) pdf with the
power parameter w + 1 > 0 and parameter vector ξ,

Cw+1 = αβ

∞∑
i,q,j,p,l,k=0

(
β − 1

q

)(
i

j

)(
βj

p

)
Γ(α(p+ q + 1) + 1 + l)

Γ(α(p+ q + 1) + 1)l!

×
(
k

w

)
Γ(α(q + p+ 1) + l)

Γ(α(q + p+ 1) + l − k)k!

(−1)j+k+w

i!

1

w + 1
. (6)

See the appendix for the expansions leading to (5). Consequently, the mathematical
and statistical properties of the OPGW-G family of distributions follow directly from
those of the exponentiated-G (E-G) distribution.

For the convergence of the series

exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)
=

∞∑
i=0

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)i

i!
,

using the ratio test, we have

lim
i→∞

(
1−[1+( G(x;ξ)

1−G(x;ξ) )
α
]
β
)i+1

(i+1)!(
1−[1+( G(x;ξ)

1−G(x;ξ) )
α
]
β
)i

i!

= lim
i→∞

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)
(i+ 1)

= 0.

Thus, the series converges for every G(x; ξ).

2.5 Some special cases
In this section, we consider some special cases of the OPGW-G family of distributions,
specifically when the distribution function G(x; ξ) is gamma, Burr XII and power
distributions, respectively.
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2.5.1 OPGW-gamma distribution

Suppose the cdf and pdf of the baseline distribution are given by G(x; a, b) =
γ(a, xb )

Γ(a) and

g(x; a, b) =
xa−1 exp(−x

b )

baΓ(a) for a, b > 0 and x > 0. The new OPGW-gamma (OPGW-Ga)
distribution has cdf and pdf given by

F (x;α, β, a, b) = 1− exp

1−

1 +
 γ(a, xb )

Γ(a)

1− γ(a, xb )

Γ(a)

αβ


f(x;α, β, a, b) = αβ

1 +
 γ(a, xb )

Γ(a)

1− γ(a, xb )

Γ(a)

αβ−1 γ(a, xb )

Γ(a)

1− γ(a, xb )

Γ(a)

α−1

× exp

1−

1 +
 γ(a, xb )

Γ(a)

1− γ(a, xb )

Γ(a)

αβ
xa−1 exp(−x

b )

baΓ(a)

×
(
1−

γ(a, x
b )

Γ(a)

)−2

,

respectively, for α, β, a, b > 0. The hazard rate function is given by

hF (x;α, β, a, b) = αβ

1 +
 γ(a, xb )

Γ(a)

1− γ(a, xb )

Γ(a)

αβ−1 γ(a, xb )

Γ(a)

1− γ(a, xb )

Γ(a)

α−1

×
xa−1 exp (−x

b )

baΓ(a)

(
1−

γ(a, x
b )

Γ(a)

)−2

.

Figure 1: Density and hazard function plots for OPGW-Ga distribution

Figure 1 shows the plots of pdf and hazard functions of OPGW-Ga distribution,
respectively. The pdf can take several shapes including right skewed, left skewed, almost
symmetric and reverse-J shapes. The OPGW-Ga hazard function displays increasing,
decreasing, bathtub and upside-down bathtub shapes.
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2.5.2 OPGW-Burr XII distribution

Suppose the cdf and pdf of the baseline distribution are given by G(x; s, c, k) = 1 −[
1 + (xs )

c
]−k and g(x; s, c, k) = cks−cxc−1

[
1 + (xs )

c
]−k−1, for s, c, k > 0, and x > 0.

Then the new OPGW-Burr XII (OPGW-BXII) distribution has cdf and pdf given by

F (x;α, β, s, c, k) = 1− exp

1−

[
1 +

(
1−

[
1 + (xs )

c
]−k[

1 + (xs )
c
]−k

)α]β
f(x;α, β, s, c, k) = αβ

[
1 +

(
1−

[
1 + (xs )

c
]−k[

1 + (xs )
c
]−k

)α]β−1(
1−

[
1 + (xs )

c
]−k[

1 + (xs )
c
]−k

)α−1

× exp

1−

[
1 +

(
1−

[
1 + (xs )

c
]−k[

1 + (xs )
c
]−k

)α]βcks−cxc−1

×
[
1 +

(x
s

)c]−k−1
([

1 +
(x
s

)c]−k
)−2

,

respectively, for α, β, s, c, k > 0. The hazard rate function is given by

hF (x;α, β, s, c, k) = αβ

[
1 +

(
1−

[
1 + (xs )

c
]−k[

1 + (xs )
c
]−k

)α]β−1(
1−

[
1 + (xs )

c
]−k[

1 + (xs )
c
]−k

)α−1

×cks−cxc−1
[
1 +

(x
s

)c]−k−1
([

1 +
(x
s

)c]−k
)−2

.

For s = k = 1, we obtain OPGW-log-logistc (OPGW-LLoG) distribution.

Figure 2: Density and hazard function plots for OPGW-BXII distribution

Figure 2 shows the plots of pdf and hazard functions of OPGW-Burr XII distribu-
tion, respectively. The pdf can take several shapes including right skewed, left skewed,
almost symmetric and reverse-J shapes. The OPGW-Burr XII hazard function displays
increasing, decreasing, bathtub and upside-down bathtub shapes.
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2.5.3 OPGW-Power distribution

The cdf and pdf of the power distribution are given by G(x; θ, k) = (θx)
k and g(x; θ, k) =

kθkxk−1, for θ, k > 0, and x ∈ (0, 1
θ ). By replacing these in equations (1) and (2), then

we obtain the new OPGW-power (OPGW-P) distribution with cdf and pdf given by

F (x;α, β, θ, k) = 1− exp

1−

[
1 +

(
(θx)

k

1− (θx)
k

)α]β
f(x;α, β, θ, k) = αβ

[
1 +

(
(θx)

k

1− (θx)
k

)α]β−1(
(θx)

k

1− (θx)
k

)α−1

× exp

1−

[
1 +

(
(θx)

k

1− (θx)
k

)α]βkθkxk−1
(
1− (θx)

k
)−2

,

respectively, for α, β, θ, k > 0. The hazard rate function is given by

hF (x;α, β, θ, k) = αβ

[
1 +

(
(θx)

k

1− (θx)
k

)α]β−1(
(θx)

k

1− (θx)
k

)α−1

×kθkxk−1
(
1− (θx)

k
)−2

.

Figure 3: Density and hazard function plots for OPGW-P distribution

Figure 3 shows the plots of pdf and hazard functions of OPGW-power distribution,
respectively. The pdf can take several shapes including increasing, right skewed, left
skewed and almost symmetric shapes. The OPGW-power hazard function displays
increasing, decreasing, bathtub and upside-down bathtub shapes.

3 Some properties of OPGW-G family
In this section, we study some main properties of OPGW-G family of distributions
including quantile function, moments, order statistics and Rényi entropy.
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3.1 Quantile function
The quantile function of the OPGW-G family of distributions is obtained by solving
the non-linear equation:

F (x;α, β, ξ) = 1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)
= u,

for 0 ≤ u ≤ 1, that is,

1

G(x; ξ)
=
(
(1− log(1− u))

1
β − 1

)−1
α

+ 1.

Consequently, the quantile function for the OPGW-G family of distributions is given
by

QG(u;α, β, ξ) = X = G−1

[((
(1− log(1− u))

1
β − 1

)−1
α

+ 1

)−1]
, (7)

where QG(u;α, β, ξ) is the quantile function of the OPGW-G family of distributions
and G−1() is the quantile function of the baseline distribution. It follows therefore that
random numbers can be generated from the OPGW-G family of distributions based
on (7).

3.2 Moments and generating function
The nth raw moment, µ′

n of the OPGW-G family of distributions is given by

µ′
n = E(Xn) =

∫ ∞

−∞
xnf(x)dx =

∞∑
w=0

Cw+1E(Y n
w+1), (8)

where Yw+1 ∼ Exponentiated−G(w+1, ξ). The moment generating function (MGF)
MX(t) = E(etX) is given by

MX(t) =

∞∑
w=0

Cw+1Mw+1(t),

where Mw+1(t) is the mgf of Yw+1 and Cw+1 is given by (6).

3.3 Probability weighted moments
The (s, r)th PWM of X with OPGW-G distribution denoted Ks,r is given by

Ks,r = E(Xs(F (X))r) =

∫ ∞

−∞
xs(F (x))rf(x)dx.

Using equations (1) and (2), we can write

f(x)(F (x))r = αβ

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β−1(
G(x; ξ)

1−G(x; ξ)

)α−1

g(x; ξ)
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× exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)
(1−G(x; ξ))

−2

×

(
1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β))r

=

∞∑
m=0

(
r

m

)
(−1)mαβ

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β−1

×
(

G(x; ξ)

1−G(x; ξ)

)α−1

g(x; ξ)(1−G(x; ξ))
−2

× exp

(
(m+ 1)

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β))
.

Following the same steps of the density expansion leading to (5), we get

f(x)F (x)r =

∞∑
w=0

bw+1hw+1(x; ξ),

where

b
w+1

= αβ

∞∑
i,q,j,p,l,k,m=0

(
r

m

)(
β − 1

q

)(
i

j

)(
βj

p

)
Γ(α(p+ q + 1) + 1 + l)

Γ(α(p+ q + 1) + 1)l!

×
(
k

w

)
Γ(α(q + p+ 1) + l)

Γ(α(q + p+ 1) + l − k)k!

(−1)j+k+w

i!

(−1)m(m+ 1)i

w + 1
.

Consequently, the PWM of the OPGW-G family of distributions can be written as

Ks,r =

∫ ∞

−∞
xs

∞∑
w=0

bw+1hw+1(x; ξ)dx =

∞∑
w=0

bw+1

∫ ∞

−∞
xshw+1(x; ξ)dx.

Finally, the (s, r)th PWM of X can be written as an infinite linear combination of the
moment of the E-G distribution.

3.4 Order statistics
In this sub-section, the density function of the OPGW-G order statistics is presented
as a linear combination of E-G densities.. Let X1, X2, ...., Xn be independent and
identically distributed OPGW-G random variables. Using the binomial expansion

(1− F (x))n−t =

n−t∑
m=0

(
n− t

m

)
(−1)m[F (x)]m,

the pdf of the tth order statistic can be expressed as

ft:n(x) =
n!f(x)

(t− 1)!(n− t)!
[F (x)]t−1[1− F (x)]n−t
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=
n!f(x)

(t− 1)!(n− t)!

n−t∑
m=0

(−1)m
(
n− t

m

)
[F (x)]m+t−1. (9)

Based on (1) and (2), we can write

f(x)F (x)m+t−1 = αβ

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β−1(
G(x; ξ)

1−G(x; ξ)

)α−1

g(x; ξ)

× exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)
(1−G(x; ξ))

−2

×

(
1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β))m+t−1

.

Following the same steps of the density expansion leading to (5), we get

f(x)F (x)m+t−1 =

∞∑
w=0

aw+1hw+1(x; ξ), (10)

where

a
w+1

= αβ

∞∑
i,q,j,p,l,k,v=0

(
m+ t− 1

v

)(
β − 1

q

)(
i

j

)(
βj

p

)
Γ(α(p+ q + 1) + 1 + l)

Γ(α(p+ q + 1) + 1)l!

×
(
k

w

)
Γ(α(q + p+ 1) + l)

Γ(α(q + p+ 1) + l − k)k!

(−1)j+k+w

i!

(−1)v(v + 1)i

w + 1
.

Substituting (10) into (9), we obtain

ft:n(x) =
n!

(t− 1)!(n− t)!

∞∑
w=0

n−t∑
m=0

(−1)m
(
n− t

m

)
aw+1hw+1(x; ξ),

where hw+1(x; ξ) = (w+1)[G(x; ξ)]wg(x; ξ) is the exponentiated-G (E-G) pdf with the
power parameter w + 1 > 0 and parameter vector ξ.

3.5 Rényi entropy
Rényi entropy (Rényi, 1960) is an extension of Shannon entropy. Rényi entropy is
defined to be

IR(v) =
1

1− v
log

(∫ ∞

0

[f(x;α, β, ξ)]vdx

)
, v ̸= 1, v > 0.

Rényi entropy tends to Shannon entropy as v → 1.
Rényi entropy for the OPGW-G family of distributions is given by

IR(v) =
1

1− v
log

 ∞∑
i,j,p,q,k,w=0

wi,j,p,q,k,w exp((1− v)IREG)

 ,
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for v > 0, v ̸= 1, where IREG =
∫∞
0

([
w
v + 1

]
(G(x; ξ))

w
v g(x; ξ)

)v

dx is the Rényi

entropy of E-G distribution with power parameter w
v + 1, and

wi,j,p,q,k,w = (αβ)v
vi

i!

(
v(β − 1)

j

)(
i

p

)(
βp

q

)
Γ(v + α(q + j + v) + l)

Γ(v + α(q + j + v))l!

×(−1)p+k+w

(
α(j + q + v) + l − v

k

)(
k

w

)
1[

w
v + 1

]v .
See the appendix for the expansions leading to the Rényi entropy for the OPGW-G

family of distributions given above.

4 Estimation
We assume that X follows OPGW-G family of distributions and let ∆ = (α, β, ξ)T be
the vector of model parameters. The log-likelihood function ℓn = ℓn(∆) based on a
random sample of size n from the OPGW-G family of distributions is given by

ℓn(∆) = n ln(αβ) + (α− 1)

n∑
i=1

ln

(
G(xi; ξ)

1−G(xi; ξ)

)

+

n∑
i=1

(
1−

[
1 +

(
G(xi; ξ)

1−G(xi; ξ)

)α]β)
− 2

n∑
i=1

ln (1−G(xi; ξ))

+(β − 1)

n∑
i=1

ln

[
1 +

(
G(xi; ξ)

1−G(xi; ξ)

)α]
+

n∑
i=1

ln(g(xi; ξ)).

The first derivative of the log-likelihood function with respect to each component of
the parameter vector ∆ = (α, β, ξ)T , that is, elements of the score vector U(∆) are
given in the appendix.

Setting the nonlinear system of equations (∂ℓn∂α , ∂ℓn
∂β , ∂ℓn

∂ξk
)T = 0, and solving them

simultaneously yields the maximum likelihood estimates of the parameters, denoted
by ∆̂. It is usually more convinient to adopt nonlinear optimization method such
as Newton-Raphson procedure to maximize ℓ numerically. We maximize the likeli-
hood function using NLmixed in SAS as well as the function nlm in R (rdevelopment-
coreteam, 2011).

Let J(∆̂) be the observed Fisher information matrix evaluated at ∆̂. Under stan-
dard regulatory conditions when n → ∞, the distribution of ∆̂ can be approximated by
a multivariate normal Nq+2(0, J(∆̂)−1) distribution to construct confidence intervals
and confidence regions for the individual model parameters and for the survival and
hazard rate functions.

The issues of existence and uniqueness of the MLEs are theoretical interest and has
been studied by several authors for different distributions including Seregin (2010),
Santos Silva and Tenreyro (2010), Zhou (2009), and Xia et al. (2009). At this point we
are not able to address the theoretical aspects (existence, uniqueness) of the MLE of
the parameters of the OPGW-G family of distributions. This is because the maximum
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likelihood estimates are obtained by numerical approximations, as no explicit expres-
sion for the solution of the likelihood equations exists. Also, it is noted that this could
be a subject of further research as it was not considered in this paper.

The estimated values of the parameters (standard error in parenthesis), -2log-
likelihood statistic (−2 log(L)), Akaike information criterion (AIC = 2p − 2 log(L)),
Bayesian information criterion (BIC = p log(n) − 2 log(L)) and consistent Akaike in-
formation criterion

(
AICC = AIC + 2 p(p+1)

n−p−1

)
, where L = L(∆̂) is the value of the

likelihood function evaluated at the parameter estimates, n is the number of observa-
tions, and p is the number of estimated parameters are presented. In order to compare
the models, we use the criteria stated above. We also obtain the goodness-of-fit statis-
tics: Crameŕ-von Mises (W ∗) and Anderson-Darling Statistics (A∗) described by Chen
and Balakrishnan (1995), as well as Kolmogorov-Smirnov (KS) statistic and its p-value.
Note that for for AIC, AICC, BIC, and the goodness-of-fit statistics W ∗, A∗ and KS,
smaller values are preferred.

5 Simulation study
The performance of the OPGW-LLoG distribution is examined by conducting various
simulations for different sizes (n= 50, 100, 200, 400, 800) via the R package. We
simulate N = 1000 samples for the true parameters values given in Table 1. The table
lists the mean MLEs of the model parameters along with the respective bias and root
mean squared errors (RMSEs). The bias and RMSE for the estimated parameter, say,
θ̂, say, are given by:

Bias(θ̂) =

∑N
i=1 θ̂i
N

− θ, and RMSE(θ̂) =

√∑N
i=1(θ̂i − θ)2

N
,

respectively. From the results, we can clearly verify that as the sample size n increases,
the mean estimates of the parameters tend to be closer to the true parameter values,
since RMSEs decay toward zero.

6 Applications
Below we present examples to illustrate the flexibility and usefulness of the OPGW-
LLoG distribution for data modeling. The OPGW-LLoG distribution is fitted to the
data sets and these fits are compared to the fits of the non-nested, the new power gen-
eralized Weibull-log-logistic (NPGW-LLoG) distribution with (s = 1) by Oluyede et al.
(2020), Marshall-Olkin Log-logistc (MOLLD) distribution (Wenhao, 2013), exponenti-
ated log-logistic (ELLoG) distribution by Rosaiah et al. (2007), extended log-logistic
(ExLLoG) distribution by Lima and Cordeiro (2017), the Topp-Leone generalized ex-
ponential (TLGE) distribution by Sangsanit and Bodhisuwan (2016), the inverse-power
logistic-exponential (IPLE) distribution by Sobhi and Mashail (2020) and Weibull ex-
ponential (WE) distribution by Oguntunde et al. (2015). The Pdf’s of models of
comparison are given in the appendix.
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Table 1: Monte Carlo simulation results for OPGW-LLoG distribution: Mean, RMSE
and average bias

α = 1.0, β = 1.0, c = 0.1 α = 1.5, β = 1.0, c = 1.0
Parameter n Mean RMSE Bias Mean RMSE Bias

50 1.053 0.486 0.053 1.756 2.149 0.256
100 1.049 0.327 0.049 1.598 0.277 0.098

α 200 1.036 0.236 0.036 1.533 0.138 0.033
400 1.008 0.088 0.008 1.511 0.095 0.011
800 1.003 0.055 0.003 1.497 0.067 -0.002
50 1.839 2.265 0.839 6.590 10.594 5.590
100 1.589 1.909 0.589 4.770 7.702 3.770

β 200 1.441 1.628 0.441 3.980 6.179 2.980
400 1.287 1.253 0.287 2.403 3.689 1.403
800 1.163 0.919 0.163 1.585 2.056 0.585
50 0.360 1.540 0.260 1.016 0.931 0.016
100 0.220 0.398 0.120 0.950 0.674 -0.049

c 200 0.219 0.356 0.119 0.873 0.546 -0.126
400 0.173 0.252 0.073 0.924 0.422 -0.075
800 0.143 0.177 0.043 0.944 0.306 -0.055

α = 1.5, β = 1.0, c = 1.5 α = 1.0, β = 0.1, c = 1.0
50 1.760 2.068 0.260 1.448 3.116 0.448
100 1.598 0.262 0.098 1.137 0.696 0.137

α 200 1.545 0.149 0.045 1.130 0.517 0.130
400 1.521 0.098 0.021 1.073 0.331 0.073
800 1.503 0.066 0.003 1.028 0.156 0.028
50 6.713 10.691 5.713 0.308 0.893 0.208
100 4.728 7.635 3.728 0.277 0.657 0.177

β 200 3.780 6.005 2.780 0.198 0.401 0.098
400 2.237 3.445 1.237 0.159 0.228 0.059
800 1.565 2.034 0.565 0.151 0.194 0.051
50 1.501 1.428 0.001 1.510 2.282 0.510
100 1.425 0.975 -0.074 1.363 1.793 0.363

c 200 1.345 0.807 -0.154 1.352 1.668 0.352
400 1.413 0.616 -0.086 1.278 1.313 0.278
800 1.428 0.452 -0.071 1.245 1.181 0.245

Plots of the fitted densities, the histogram of the data and probability plots (Cham-
bers et al., 1983) are given in Figure 5 and Figure 7. For the probability plot, we plotted
F (x(j); α̂, β̂, ξ̂) against j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j) are the ordered values of

the observed data. The measures of closeness are given by the sum of squares

SS =

n∑
j=1

[
F (x(j); α̂, β̂, ξ̂)−

(
j − 0.375

n+ 0.25

)]2
.

The goodness-of-fit statistics W ∗ and A∗, described by Chen and Balakrishnan
(1995) are also presented in the tables. These statistics can be used to verify which
distribution fits better to the data. In general, the smaller the values of W ∗ and A∗,
the better the fit.

The estimates of the parameters of OPGW-LLoG distribution (standard error in
parentheses), AIC, AICC, BIC, and the goodness-of-fit statistics W∗, A∗, Kolmogorov-
Smirnov (KS) and its p-value as well as SS are given in Tables 2-5.
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6.1 Survival Data
The data corresponds to the survival times (in years) of a group of patients given
chemotherapy treatment reported by Bekker et al. (2000), The data are:
0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458,
0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219,
1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830,
3.578, 3.658, 3.743, 3.978, 4.003, 4.033.

Figure 4: Profile likelihood function plots for parameters of OPGW-LLoG on the survival data set

Figure 5: Fitted densities and probability plots of the survival data

From Table 3, the AIC, AICC, BIC, SS, W ∗, A∗, under OPGW-LLoG distribution
are the smallest than any other distribution. Additionaly, the p-value of KS-test under
OPGW-LLoG distribution is greater than all of the non-nested models. For these
reasons, the OPGW-LLoG distribution is more appropriate for fitting this data.

6.2 Time to failure of Kevlar 49/epoxy Data
The data set consists of 101 observations of stress-rupture life of kevlar 49/epoxy
strands which are subjected to constant sustained pressure at the 90% stress level until
all have failed, so that the complete data set with the exact times of failure is recorded.
These failure times in hours, are originally given by Barlow et al. (1984). The data are
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Table 2: Estimates of models for survival data
Estimates

Model α β C
OPGW-LLoG 0.911 0.796 1.234

(0.080) (0.095) (0.059)

α β c
NPGW-LLoG 2.684 0.874 0.554

(0.450) (0.122) (0.100)

α β a
ELLoG 1.040 1.646 0.803

(1.328) (0.908) (1.037)

α β γ
MOLLD 1.703×1003 1.124 1.865×10−04

(2.6×10−07) (1.3×10−01) (2.0×10−04)

α β λ
ExLLoG 1.507 1.316 2.538×10−05

(1.8×10−01) (3.4×10−01) (2.1×10−02)

α λ β
TLGE 6.8×10−03 1.000 1.9×1002

(1.3×10−03) (1.6×10−01) (4.6×10−05)

α β λ
IPLE 2.7×1002 4.1×10−03 6.9×10−01

(7.6×10−09) (4.9×10−04) (5.2×10−04)

α β λ
WE 0.878 0.747 0.500

(0.762) (0.202) (0.367)

Table 3: Goodness-of-fit statistics for survival data
Model −2 log L AIC AICC BIC W ∗ A∗ KS P-value SS

OPGW-LLoG 116.220 122.220 122.806 127.640 0.075 0.509 0.105 .663 0.076
NPGW-LLoG 128.843 134.842 135.428 140.262 0.086 0.623 0.231 .013 0.859

ELLoG 120.067 126.067 126.652 131.487 1.826 9.415 0.544 .000 2.071
MOLLD 125.545 131.545 132.131 136.965 0.076 0.515 0.143 .284 0.088
ExLLoG 120.371 126.371 126.956 131.791 15.945 90.332 0.987 .000 15.51
TLGE 117.532 123.532 124.117 128.952 0.079 0.532 0.125 .445 0.151
IPLE 120.385 126.384 126.970 131.804 15.943 90.331 0.987 .000 15.49
WE 117.369 123.369 123.954 128.789 0.135 0.882 0.122 .472 0.122

0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11,
0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43,
0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80,
0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15,
1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55,
1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20,
4.69, 7.89.
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Figure 6: Profile likelihood function plots for parameters of OPGW-LLoG on the Kevlar 49/epoxy
data

The values in Table 5, show that the OPGW-LLoG distribution has the smallest
values for AIC, AICC, BIC, SS, W ∗, A∗, KS and the largest p-value compared to
all fitted distributions. From that, we conclude that the OPGW-LLoG distribution
provides the ”best” fit as compared to other fitted models for Kevlar 49/epoxy data
set.

Figure 7: Fitted densities and probability plots of Kevlar 49/epoxy data

7 Conclusions
We propose a new generalized distribution called the odd power generalized Weibull-G
(OPGW-G) family of distributions. The statistical properties of the new family such
as moments, incomplete moments, probability weighted moments, distribution of order
statistics and entropy are derived. Maximum likelihood estimation technique is used to
estimate the model parameters. The performance of the special case of the OPGW-G
was examined by conducting various simulations for different sample sizes. Finally,
the special case of the OPGW-G named OPGW-LLoG is fitted to real data sets to
illustrate the potentiality of the proposed family of distributions.
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Table 4: Estimates of models for time to failure of Kevlar 49/epoxy data
Estimates

Model α β C
OPGW-LLoG 1.031 1.013 0.892

(0.038) (0.070) (0.044)

α β c
NPGW-LLoG 2.007 0.677 0.735

(0.281) (0.070) (0.137)

α β a
ELLoG 0.512 1.000 1.120

(0.285) (0.162) (0.407)

α β γ
MOLLD 5.0×1005 7.4×10−01 3.9×10−05

(3.5×10−16) (3.2×10−09) (6.1×10−06)

α β λ
ExLLoG 1.040 0.125 9.613

(0.121) (0.125) (8.159)

α λ β
TLGE 6.203 0.250 0.206

(10.182) (0.078) (0.227)

α β λ
IPLE 7.9×1002 1.1×10−03 6.9×10−01

(1.5×10−10) (9.6×10−05) (1.6×10−04)

α β λ
WE 1.176 0.619 0.500

(0.513) (0.120) (0.212)

Table 5: Goodness-of-fit statistics for time to failure of Kevlar 49/epoxy data
Model −2 log L AIC AICC BIC W ∗ A∗ KS P-value SS

OPGW-LLoG 205.926 211.926 212.173 219.771 0.196 1.102 0.094 .333 0.205
NPGW-LLoG 231.327 237.327 237.574 245.172 0.631 3.403 0.234 .000 1.467

ELLoG 232.419 238.419 238.666 246.264 0.622 3.367 0.142 .033 0.516
MOLLD 259.068 265.068 265.315 272.913 0.609 3.279 0.201 .001 1.036
ExLLoG 208.816 214.816 215.063 222.661 34.01 201.19 0.993 .000 34.37
TLGE 209.485 215.485 215.733 223.331 0.296 1.591 0.103 .228 0.259
IPLE 225.409 231.409 231.656 239.254 33.68 199.57 0.994 .000 32.94
WE 220.8034 226.8034 227.050 234.648 0.182 1.259 0.116 .126 0.249
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