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Abstract: We develop a generalized distribution, namely, exponentiated half logistic
log-logistic Weibull distribution. Several structural properties of the distribution in-
cluding expansion of density, distribution of order statistics, Rényi entropy, moments,
probability weighted moments, quantile function, generating function, and maximum
likelihood estimates were derived. A simulation study to examine the consistency of
the maximum likelihood estimates was conducted. Finally, real data examples are pre-
sented to illustrate the applicability and usefulness of the proposed model.

Keywords: Generalized distribution; Half logistic distribution; Log-logistic distri-
bution; Maximum likelihood estimation; Weibull distribution.
Mathematics Subject Classification (2010): 60E05, 62E15, 62F30.

1 Introduction
Increasing demand for generalized distributions in areas of finance, economics, and
physics just to mention a few, has motivated statisticians to work on improving clas-
sical models by adding some extra parameters to these models. The log-logistic and
Weibull distributions are widely used in many areas of biology, reliability, and insur-
ance. However, these distributions have an inadequate range of behavior and failed to
provide adequate fit in some real lifetime situations. Therefore, new classes of distri-
butions originated from modified versions of the Weibull distribution were proposed
to fulfill the non-monotonic failure rate. Some of these generalized and extended dis-
tributions include the beta modified Weibull (BMW) distribution by Nadarajah et al.
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(2011), the gamma generalized modified Weibull (GGMW) distribution by Oluyede
et al. (2015), gamma Weibull-G family by Oluyede et al. (2018), the exponentiated
Weibull (EW) distribution by Gupta et al. (2001) and the modified Weibull (MW)
distribution by Lai et al. (2003), to mention a few.

The half-logistic distribution plays an important role in many practical situations
such as physics and hydrology. The distribution was developed by Balakrishman et al.
(1985). Extensions of the half-logistic distribution include the odd exponentiated half-
logistic-G distribution by Afify et al. (2017) and the type 1 half-logistic distribution
by Cordeiro et al. (2016). In this work, we study a generalized distribution called the
exponentiated half-logistic log-logistic Weibull (EHL-LLoGW) distribution.

The exponentiated half-logistic distribution developed by Cordeiro et al. (2014),
has cumulative distribution function (cdf) and probability density function (pdf) given
by

F (x;ϕ) =

[
1− Ḡ(x, ϕ)

1 + Ḡ(x, ϕ)

]δ
, (1)

f(x;ϕ) =
2δg(x, ϕ)(1− Ḡ(x, ϕ))δ−1

(1 + Ḡ(x, ϕ))δ+1
. (2)

respectively, where G(x;ϕ) is the baseline cdf, Ḡ(x;ϕ) = 1−G(x;ϕ) and ϕ is the vector
of parameters from the baseline distribution.

Oluyede et al. (2016) developed the log-logistic Weibull (LLoGW) distribution with
cdf and pdf given by

GLLoGW (x) = 1−
(
1 + xc

)−1
exp(−αxβ), (3)

gLLoGW (x) = e−αxβ(
1 + xc

)−1
{
αxβ−1 +

cxc−1

(1 + xc)

}
, (4)

respectively, for c, α, β > 0 and x ≥ 0.
The main motivation for the development of the exponentiated half logistic-log lo-

gistic Weibull (EHL-LLoGW) distribution is the applicability of the log-logistic and
Weibull distributions in different areas of science and engineering, the ability to handle
skewness and kurtosis, ability to handle monotonic and non-monotonic hazard rates.
The proposed distribution is versatile and flexible in data fitting. The rest of the paper
is organized as follows: In Section 2, we present the generalized distribution and the
expansion of its density. Some sub-models, hazard, and reverse hazard rate functions
of the EHL-LLoGW distribution are also presented in this section. Structural proper-
ties including the distribution of order statistics, Rényi entropy, moments, probability
weighted moments, quantile and generating functions are presented in Section 3. In
Section 4, we present the maximum likelihood estimates. The Monte Carlo simula-
tion study is conducted in Section 5. Applicability of the EHL-LLoGW distribution is
tested in Section 6, followed by concluding remarks.
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2 The proposed distribution
2.1 Model definition
In this section, we derive the EHL-LLoGW distribution and obtain a series expansion
of the distribution. We also include sub-models, hazard and reverse hazard rate func-
tions as well as the graphs of the pdf and hazard rate function (hrf). We transform
the LLoGW distribution using the half logistic generator and add an exponentiation
parameter to obtain the EHL-LLoGW distribution with cdf and pdf given by

F (x;α, β, δ, c) =

(
1− (1 + xc)−1e−αxβ

1 + (1 + xc)−1e−αxβ

)δ

, (5)

f(x;α, β, δ, c) =

2δe−αxβ

(1 + xc)−1

[
αxβ−1 + cxc−1

(1+xc)

]
[
1 + (1 + xc)−1e−αxβ

]2
×

(
1− (1 + xc)−1e−αxβ

1 + (1 + xc)−1e−αxβ

)δ−1

, (6)

respectively, for c, α, β > 0, δ > 0 and x ≥ 0.

2.2 Series expansion
We present the series expansion of the EHL-LLoGW distribution in this section. By
applying the following generalized binomial series expansions

[1 + ḠLLoGW (x;α, β, c)]−(δ+1) =

∞∑
p=0

(−1)p
(
−(δ + 1)

p

)
Ḡp

LLoGW (x;α, β, c),

[
1− ḠLLoGW (x;α, β, c)

]δ−1
=

∞∑
m=0

(−1)m
(
δ − 1

m

)
Ḡm

LLoGW (x;α, β, c),

[
ḠLLoGW (x;α, β, c)

]p+m
= (1−GLLoGW (x;α, β, c))p+m

=

∞∑
j=0

(−1)j
(
p+m

j

)
Gj

LLoGW (x;α, β, c),

we can write the pdf of the EHL-LLoGW distribution as

f(x;α, β, c) =

∞∑
p,m,j=0

2δ(−1)p+m+j

(
−(δ + 1)

p

)(
δ − 1

m

)(
p+m

j

)
×gLLoGW (x;α, δ, c)Gj

LLoGW (x;α, β, c)

=

∞∑
j=0

vjgj(x;α, β, c), (7)
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which is an infinite linear combination of exponentiated-LLoGW (Exp-LLoGW) dis-
tribution, where

gj(x;α, β, c) = (j + 1)gLLoGW (x;α, β, c)[Gj
LLoGW (x;α, β, c)],

is an Exp-LLoGW distribution with power parameter j and linear component

vj =

∞∑
p,m=0

2δ(−1)p+m+j

(j + 1)

(
−(δ + 1)

p

)(
δ − 1

m

)(
p+m

j

)
. (8)

We can therefore, derive other mathematical properties of the EHL-LLoGW distribu-
tion directly from those of the Exp-LLoGW distribution.

2.3 Some sub-models of ELLLoGW distribution
In this sub-section, we discuss some sub-models of EHL-LLoGW distribution.

• If δ = 1, we obtain the half logistic log-logistic Weibull (HL-LLoGW) distribution.

• If β = 1, we obtain the exponentiated half logistic-log-logistic exponential (EHL-
LLoGE) distribution.

• If β = 2, we obtain the exponentiated half logistic-log-logistic Rayleigh (EHL-
LLoGR) distribution.

• If δ = β = 1, we obtain the half logistic-log logistic Exponential (HL-LLoGE)
distribution.

• If α = 0, we obtain the exponentiated half logistic-log-logistic model (EHL-LLoG)
distribution.

• If δ = c = 1, the EHL-LLoGW cdf reduces to the two parameter distribution
with cdf given by

F (x;α, β) =

(
1− (1 + x)−1e−αxβ

1 + (1 + x)−1e−αxβ

)
(9)

for α, β > 0 and x ≥ 0.

2.4 Hazard and reverse hazard rate functions
We present the hazard and reverse hazard rate functions of the EHL-LLoGW distri-
bution in this section. The hazard and reverse hazard functions of the EHL-LLoGW
distribution are respectively given by

hF (x) = 2e−αxβ

(1 + xc)−1

[
αxβ−1 +

cxc−1

(1 + xc)

]

×
[
1 + (1 + xc)−1e−αxβ

]−2
(
1−

[
1− (1 + xc)−1e−αxβ

1 + (1 + xc)−1e−αxβ

])−1

,
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τF (x) = 2e−αxβ

(1 + xc)−1

[
αxβ−1 +

cxc−1

(1 + xc)

]

×
[
1 + (1 + xc)−1e−αxβ

]−2
[
1− (1 + xc)−1e−αxβ

1 + (1 + xc)−1e−αxβ

]−1

,

for x ≥ 0, c, α, β, δ > 0.

Figure 1 shows the plots of the pdfs and hrfs of EHL-LLoGW distribution for selected
parameters values. The pdf can take various shapes including almost symmetric, right
and left-skewed, J and reverse-J. Graphs of the hrf exhibits increasing, decreasing,
reverse-J and uni-modal shapes.

Figure 1: Plots of the pdf and hrf for the EHL-LLoGW distribution.

3 Some properties
In this section, we derive some properties of the EHL-LLoGW distribution which in-
cludes distribution of order statistics, Rényi entropy, ordinary and incomplete mo-
ments, probability weighted moments (PWMs), generating function and quantile func-
tion.

3.1 Distribution of order statistics
Order statistics plays a vital role in many areas of statistical theory and practice. Let
X1, ..., Xn be a random sample from the EHL-LLoGW distribution. The pdf of the ith
order statistic can be written as

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−j∑
j=0

(
n− i

j

)
F (x)j+i−1, (10)

where B(., .) is the beta function. Substituting equations of the cdf and pdf of the
EHL-LLoGW into equation (10), we have

f(x)F (x)j+i−1 =
2δgLLoGW (x;α, β, c)(1− ḠLLoGW (x;α, β, c))δ−1

(1 + ḠLLoGW (x;α, β, c))δ+1
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×

([
1− ḠLLoGW (x;α, β, c)

1 + ḠLLoGW (x;α, β, c)

]δ)j+i−1

=
2δgLLoGW (x;α, β, c)(1− ḠLLoGW (x;α, β, c))δ(j+i)−1

(1 + ḠLLoGW (x;α, β, c))δ(j+i)+1
.

Using the following generalized binomial series expansions

(1 + ḠLLoGW (x;α, β, c))−(δ(j+i)+1) =

∞∑
z=0

(−1)z
(
−(δ(j + i) + 1)

z

)
×Ḡz

LLoGW (x;α, β, c),

(1− ḠLLoGW (x;α, β, c))δ(j+i)−1 =

∞∑
k=0

(−1)k
(
δ(j + i)− 1

k

)
×Ḡk

LLoGW (x;α, β, c),

G
z+k

LLoGW (x;α, β, c) = (1−GLLoGW (x;α, β, c))z+k

=

∞∑
m=0

(−1)m
(
z + k

m

)
Gm

LLoGW (x;α, β, c),

we have

f(x)F (x)j+i−1 =

∞∑
z,k,m=0

(−1)m+z+k2δ

(
−δ(j + i) + 1

z

)(
δ(j + i)− 1

k

)(
z + k

m

)
×gLLoGW (x;α, β, c)Gm

LLoGW (x;α, β, c).

(11)

We can therefore, write pdf of the ith order statistic of the EHL-LLoGW distribution
as

fi:n(x) =
1

B(i, n− i+ 1)

∞∑
z,k,m=0

n−j∑
j=0

(−1)m+z+k2δ

(
−δ(j + i) + 1

z

)(
δ(j + i)− 1

k

)

×
(
z + k

m

)
gLLoGW (x;α, β, c)(GLLoGMW (x;α, β, c))m

=

∞∑
m=0

vmhm(x;α, β, c), (12)

where B(., .) is the beta function,

hm(x) = (m+ 1)gLLoGW (x;α, βc)(GLLoGMW (x;α, β, c))m

is the Exp-LLoGW density with power parameter m and the weights vm are given by

vm =
1

B(i, n− i+ 1)

∞∑
z,k=0

n−j∑
j=0

(−1)m+k+z2δ

(m+ 1)

(
−δ(j + i) + 1

z

)
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×
(
δ(j + i)− 1

k

)(
z + k

m

)
. (13)

Then, the density function from the ith order statistics from the EHL-LLoGW dis-
tribution is a mixture of Exp-LLoGW densities. We note that the mathematical and
statistical properties of distribution of the ith order statistic from the EHL-LLoGW
distribution follow from those properties of Exp-LLoGW distribution.

3.1.1 Moments of order statistics

The qth moment of the ith order statistics from the EHL-LLoGW can be expressed as

E(Xq
i:n) =

∞∑
m=0

vmE(Y q
m), (14)

where Ym follows an Exp-LLoGW distribution with power parameter m.

3.2 Entropy
There are several types of entropy, including Rényi entropy by Rényi et al. (1960) and
Shannon entropy by Shannon et al. (1951). Shannon entropy is a special case of Rényi
entropy. Rényi entropy (IR(ν)) is mathematically defined as

IR(ν) = (1− ν)−1 log

[∫ ∞

0

fν(x)dx

]
, v ̸= 1, v > 0. (15)

Using equation (6), fν(x), can be written as

fν(x) =
(2δ)νgνLLoGW (x;α, β, c)(1− ḠLLoGW (x;α, β, c))ν(δ−1)

(1 + ḠLLoGW (x;α, β, c))ν(δ+1)
.

Appplying the following generalized binomial series expansions

(1 + ḠLLoGW (x;α, β, c))−ν(δ+1) =

∞∑
j=0

(−1)j
(
−ν(δ + 1)

j

)
G

j

LLoGW (x;α, β, c),

(1− ḠLLoGW (x;α, β, c))ν(δ+1) =

∞∑
m=0

(−1)m
(
ν(δ + 1)

m

)
G

m

LLoGW (x;α, β, c),

G
m+j

LLoGW (x;α, β, c) = (1−GLLoGW (x;α, β, c))m+j

=

∞∑
p=0

(−1)p
(
m+ j

p

)
Gp

LLoGW (x;α, β, c),

we have

fν(x) =

∞∑
j,m,p=0

(−1)j+m+p(2δ)ν
(
−ν(δ + 1)

j

)(
ν(δ + 1)

m

)(
m+ j

p

)
×gνLLoGW (x;α, β, δ, c)Gp

LLoGW (x;α, β, c). (16)
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Therefore, Rényi entropy of the EHL-LLoGW distributions can be written as

IR(ν) = (1− ν)−1 log

[ ∞∑
p=0

wpe
(1−ν)IREG

]
, v ̸= 1, v > 0, (17)

where

wp =

∞∑
j,m=0

(−1)j+m+p(2δ)ν
(
−ν(δ + 1)

j

)(
ν(δ + 1)

m

)(
m+ j

p

)
1(

p
ν + 1

)ν

and IREG =
∫∞
0

[(
p
ν + 1

)
gLLoGW (x;α, β, c)[GLLoGW (x;α, β, c)]

p
ν

]ν
dx is Rényi en-

tropy of Exp-LLoGW distribution with parameter p
ν . Therefore, Rényi entropy of the

EHL-LLoGW distribution can be derived directly from Rényi entropy of Exp-LLoGW
distribution.

3.3 Ordinary and incomplete moments
Since the EHL-LLoGW distribution can be expressed as an infinite linear combination
of the Exp-LLoGW distribution, we therefore use the properties of the Exp-LLoGW
distribution to derive the moments and generating function of the EHL-LLoGW dis-
tribution. The rth ordinary moment of the EHL-LLoGW distribution is given by

µ′
r = E(Xr) =

∞∑
j=0

vjE(Y r
j ), (18)

where vj is the linear component and is given by equation (8) and E(Y r
j ) is the rth

moment of the Exp-LLoGW distribution. Also, using results from the Exp-LLoGW
distribution, the rth incomplete moment of X is given by

ϕr(h) =

∫ h

−∞
xrf(x)dx =

∞∑
j=0

vj

∫ h

−∞
xrgj(x;α, β, c)dx, (19)

where
∫ h

−∞ xrgj(x;α, β, c)dx is the rth incomplete moment of the Exp-LLoGW distri-
bution.

We present the first five moments together with the standard deviation (SD or σ),
coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis
(CK) of the EHL-LLoGW distribution for selected values of the model parameters (see
Table 1, for details).In addition, we can obtain the moment generating function (mgf) of the EHL-
LLoGW distribution as follows

MX(t) = E(etX) =

∞∑
j=0

vjMYj
(t),

where MYj
(t) is the mgf of the Exp-LLoGW distribution with power parameter j.
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Table 1: Moments of the EHL-LLoGW distribution for some parameter values
(0.4,0.5,0.5,1) (0.5,1.5,1,1.5) (0.5,0.5,1,0.5) (1,1.5,1,0.5) (1.3,1.5,1.5,0.5)

E(X) 0.1663 0.2910 0.1461 0.2836 0.3412
E(X2) 0.0911 0.1957 0.0818 0.1806 0.2285
E(X3) 0.0620 0.1461 0.0564 0.1319 0.1704
E(X4) 0.0468 0.1160 0.0430 0.1036 0.1353
E(X5) 0.0376 0.0960 0.0347 0.0851 0.1118
SD 0.2518 0.3331 0.2459 0.3164 0.3348
CV 1.5140 1.1447 1.6835 1.1159 0.9810
CS 1.6135 0.6639 1.8050 0.7539 0.4261
CK 4.5728 1.9416 5.2338 2.1622 1.7194

3.4 Probability weighted moments
The PWM is the expectation of certain function of a random variable whose mean
exists. The PWM method can generally be used for estimating parameters of a distri-
bution whose inverse form cannot be expressed explicitly. The (j, i)th PWM, say ηj,i
of X is defined by

ηj,i = E(XjF (X)i) =

∫ ∞

−∞
xjf(x)F (x)idx.

Using (11), we can write

f(x)F (x)i =

∞∑
z,k,m=0

(−1)z+k2δ

(
−δ(1 + i) + 1

z

)(
δ(1 + i)− 1

k

)(
z + k

m

)
×gLLoGW (x;α, β, c)Gm

LLoGW (x;α, β, c). (20)

which can be expressed as f(x)F (x)i =
∑∞

m=0 v
∗
mgm(x;α, β, c), where

v∗m =

∞∑
z,k=0

(−1)z+k2δ

(
−δ(1 + i) + 1

z

)(
δ(1 + i)− 1

k

)(
z + k

m

)
and gm(x;α, β, c) is an Exp-LLoGW density with power parameterm. Then, the PWM
of X is given by

ηj,i =

∞∑
m=0

v∗m

∫ ∞

−∞
xjgm(x;α, β, c)dx =

∞∑
m=0

v∗mE(T j
m),

where T j
m is jth power of an Exp-LLoGW distributed random variable with power

parameter m.

3.5 Quantile function
The quantile function of the EHL-LLoGW distribution is obtained by inverting the cdf
given by equation (5), as follows;

F (x;α, β, δ, c) =

(
1− (1 + xc)−1e−αxβ

1 + (1 + xc)−1e−αxβ

)δ

= u,



The exponentiated half logistic-log-logistic Weibull distribution 110

for 0 ≤ u ≤ 1, that is,

(1 + xc)−1e−αxβ

=
1− u

1
δ

1 + u
1
δ

.

The equation simplifies to

log(1 + xc)−1 − αxβ = log

[
1− u

1
δ

1 + u
1
δ

]
.

Therefore, the quantiles of the EHL-LLoGW distribution may be determined by solving
the equation

− log(1 + xc)− αxβ − log

[
1− u

1
δ

1 + u
1
δ

]
= 0. (21)

Consequently, random numbers of the EHL-LLoGW distribution can be generated by
solving equation (21) using R or Matlab. Some quantiles for selected parameters values
are given in Table 2.

Table 2: Table of quantiles for selected parameters values of the EHL-LLoGW distri-
bution
u (1.2,0.5,1.1,0.5) (1,1,0.5,0.5) (0.5,0.5,1.5,1) (1,0.5,1,0.5) (1,1,1,0.5)
0.1 0.0133 0.0004 0.2232 0.0106 0.0332
0.2 0.0503 0.0059 0.4554 0.0452 0.1143
0.3 0.1141 0.0274 0.7179 0.1104 0.2284
0.4 0.2121 0.0774 1.0313 0.2165 0.3714
0.5 0.3582 0.1676 1.4250 0.3815 0.5455
0.6 0.5781 0.3107 1.9499 0.6385 0.7595
0.7 0.9251 0.5265 2.7102 1.0562 1.0333
0.8 1.5336 0.8601 3.9723 1.8089 1.4138
0.9 2.9037 1.4616 6.7618 3.5530 2.0551

4 Maximum likelihood estimation
Let X ∼EHL-LLoGW (α, β, δ, c) and θ = (α, β, δ, c)T be the parameter vector. The
log-likelihood ℓ = ℓ(θ) for a single observation x of X is given by

ℓ(θ) = log 2− αxβ − log(1 + xc) + log(αxβ−1 + cxc−1(1 + xc)−1)

−2 log(1 + (1 + xc)−1e−αxβ

) + (δ − 1) log

(
1− (1 + xc)−1e−αxβ

1 + (1 + xc)−1e−αxβ

)
. (22)

The score functions for the parameters α, β, δ and c are given by

∂ℓ

∂α
= −xβ +

βxβ−1

αβxβ−1 + cxc−1(1 + xc)−1
+

2(1 + xc)−1xβe−αxβ

[1 + (1 + xc)−1e−αxβ ]

× (δ − 1)2xβ(1 + xc)−1e−αxβ

[1 + (1 + xc)−1e−αxβ ]2

(
1− (1 + xc)−1e−αxβ

1 + (1 + xc)−1e−αxβ

)−1

,
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∂ℓ

∂β
=

α(xβ−1 + βxβ−1 log(x))

[αβxβ−1 + cxc−1(1 + xc)−1]
+

2(1 + xc)−1αxβ log(x)e−αxβ

1 + (1 + xc)−1eαxβ

+
(δ − 1)2αxβ log(x)(1 + xc)−1e−αxβ

[1 + (1 + xc)−1e−αxβ ]2

(
1− (1 + xc)−1e−αxβ

1 + (1 + xc)−1e−αxβ

)−1

−αxβ log(x),

∂ℓ

∂δ
= log

(
1− (1 + xc)−1e−αxβ

1 + (1 + xc)−1e−αxβ

)
∂ℓ

∂c
= −xc log(x)

(1 + xc)
+

[xc−1 + cxc−1 log(x)](1 + xc)− xc log(x)cxc−1

αxβ−1eλx(β + λx) + cxc−1(1 + xc)−1

+
2xc log(x)(1 + xc)−2e−αxβ

[1 + (1 + xc)−1e−αxβ ]
+

(
1− (1 + xc)−1e−αxβ

1 + (1 + xc)−1e−αxβ

)−1

× (δ − 1)2xc log(x)(1 + xc)−2e−αxβ

[1 + (1 + xc)−1e−αxβ ]2
.

Given a random of size n drawn from the EHL-LLoGW distribution, the total log-
likelihood function is given by ℓ∗n(θ) =

∑n
j=1 ℓj(θ), where ℓj(θ), j = 1, 2, ..., n is given

by equation (22). The equations obtained by setting the above partial derivatives to
zero are not in closed form and the values of the parameters α, β, δ and c must be
found by using iterative methods. Under conditions that are fulfilled for parameters
in the interior of the parameter space but on the boundary, we have:

√
n(θ̂ − θ) is

N4(0, I
−1(θ)), where I(θ) is the expected Fisher information matrix. This asymptotic

behavior is valid if I(θ) is replaced by J(θ̂), the observed information matrix evaluated
at θ̂. The multivariate normal N4(0, J(θ̂)

−1), where the mean vector 0 = (0, 0, 0, 0)T ,
can be used to construct confidence intervals and confidence regions for the individ-
ual model parameters and for the survival and hazard rate functions. That is, the
approximate 100(1− η)% two-sided confidence intervals for α, β, δ, and c are given by:

α̂± Z η
2

√
I−1
αα

ˆ(θ), β̂ ± Z η
2

√
I−1
ββ

ˆ(θ), δ̂ ± Z η
2

√
I−1
δδ

ˆ(θ), ĉ± Z η
2

√
I−1
cc

ˆ(θ),

where I−1
αα

ˆ(θ), I−1
ββ

ˆ(θ), I−1
δδ

ˆ(θ), and I−1
cc

ˆ(θ) are the diagonal elements I−1
n

ˆ(θ) = (nI ˆ(θ))−1,
and Zη/2 is the upper (η/2)th percentile of a standard normal distribution.

5 Simulation study
In this section, the performance of the EHL-LLoGW distribution is examined by con-
ducting various simulations for different sizes (n=25, 50, 100, 200, 400 and 800 ) via
the R package. We simulate N = 1000 samples for the true parameters values given
in Table 3. The table lists the mean MLEs of the model parameters along with the
respective bias and root mean squared errors (RMSEs). The precision of the MLEs is
discussed by means of the following measures: mean, mean square error (MSE) and
average bias.
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The estimated parameter values in Table 3 indicate that the estimates are quite
stable and, more importantly, are close to the true parameter values for these sample
sizes. The simulation study shows that the maximum likelihood method is appro-
priate for estimating the EHL-LLoGW model parameters. In fact, the means of the
parameters tend to be closer to the true parameter values when n increases.

The bias and RMSE for the estimated parameter, θ̂, respectively, are given by

Bias(θ̂) =

∑N
i=1 θ̂i
N

− θ, and RMSE(θ̂) =

√∑N
i=1(θ̂i − θ)2

N
.

6 Applications
The applicability of the model compared to several other models is tested in this sec-
tion. Computations of the estimates of the model parameters was done using the nlm
function in R software. Tables 5, 7 and 9 lists the MLEs (and standard errors in
parenthesis) of the model parameters and the values of the goodness-of-fit-statistics:
-2loglikelihood (-2 log L), Akaike Information Criterion (AIC), Consistent Akaike In-
formation Criterion (AICC), Bayesian Information Criterion (BIC), Cramer-von-Mises
(W*), and Andersen-Darling (A*) as described by Chen et al. (1985). The distribution
with the lowest values of AIC, AICC, BIC, W* and A* is regarded as the best fitting
model. Kolmogorov-Smirnov (KS) and sum of squares (SS) were also used to assess
goodness-of-fit. The model with the smaller KS value and the highest p-value for the
KS statistic is deemed as the best model.

Furthermore, we present plots of the fitted densities, the histogram of the data and
probability plots by Chambers et al. (1983) to show how versatile the EHL-LLoGW
model is compared to the other models. We compare the EHL-LLoGW distribution
to several models, some of which are extensions of the Weibull distribution. The mod-
els considered are the Beta-Weibull (BW) by Cordeiro et al. (2013), Kumaraswamy-
Weibull (KwW) by Cordeiro et al. (2010), the exponential Lindley odd log-logistic
Weibull (ELOLLW) by Korkmaz et al. (2018), Topp-Leone-Weibull-Lomax (TL-WLx)
by Jamal et al. (2019), and beta odd Lindley- Uniform (BOL-U) by Cordeiro et al.
(2019).

The pdfs of the models are as follows:

f
BW

(x; a, b, α, β) =
βαβ

B(a, b)
xβ−1e−b(αx)β (1− e−(αx)β )a−1,

f
KwW

(x; a, b, α, β) = abαβxβ−1e−(αx)β (1− e−(αx)β )a−1(1− (1− e−(αx)β )a)b−1,

f
ELOLLW

(x;α, β, γ, θ, λ) =
αθ2γλγxγ−1e−(λx)γ (e−(λx))αθ−1(1− e−(λx)γ )α−1

(θ + β)((1− e−(λx)γ )α + e−α(λx)γ )θ−1

×
(
1− β log

[
e−(λx)γ

(1− e−(λx)γ )α + e−α(λx)γ

])
,

f
TL−WLx

(x; a, b, α, θ) = 2θαab(1 + bx)aα−1(1− (1 + bx)−a)α−1

× exp

(
−2

(
1− (1 + bx)−a

(1 + bx)−a

))
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Table 3: Monte Carlo simulation results for EHL-LLoGW distribution: Mean, RMSE
and average bias

I α = 1.5,β = 1.5,δ = 1.5,c = 0.3 α = 0.5,β = 1.5,δ = 1.5,c = 0.5
Parameter n Mean RMSE Bias Mean RMSE Bias

α 50 2.366 0.909 0.366 0.408 0.377 -0.091
100 2.211 0.667 0.211 0.449 0.282 -0.050
200 2.092 0.489 0.092 0.448 0.213 -0.051
400 2.044 0.370 0.044 0.469 0.156 -0.030
800 2.011 0.278 0.011 0.485 0.107 -0.014

β 50 2.277 2.063 0.277 2.104 1.208 0.604
100 2.085 0.911 0.085 1.800 0.728 0.300
200 2.045 0.612 0.045 1.673 0.442 0.173
400 2.002 0.387 0.002 1.570 0.243 0.078
800 1.995 0.287 -0.004 1.536 0.150 0.036

δ 50 0.759 0.604 0.259 1.698 8.291 0.198
100 0.646 0.378 0.146 1.486 0.500 -0.013
200 0.573 0.265 0.073 1.460 0.358 -0.039
400 0.539 0.187 0.039 1.471 0.260 -0.028
800 0.513 0.131 0.013 1.484 0.178 -0.015

c 50 1.792 1.299 0.292 0.772 0.557 0.272
100 1.761 1.085 0.261 0.652 0.410 0.152
200 1.790 0.934 0.290 0.598 0.274 0.098
400 1.709 0.744 0.209 0.557 0.184 0.057
800 1.698 0.620 0.198 0.525 0.112 0.025
II α = 1.0,β = 1.5,δ = 1.5,c = 0.3 α = 1.0,β = 1.0,δ = 0.5,c = 1.5

α 50 0.823 0.440 -0.176 0.421 0.239 -0.078
100 0.898 0.335 -0.101 0.462 0.190 -0.037
200 0.921 0.217 -0.078 0.463 0.131 -0.036
400 0.932 0.153 -0.067 0.478 0.092 -0.021
800 0.955 0.107 -0.044 0.485 0.064 -0.014

β 50 2.034 1.296 0.534 1.959 0.434 0.159
100 1.735 0.685 0.235 1.900 0.272 0.100
200 1.610 0.272 0.110 1.850 0.167 0.050
400 1.574 0.166 0.074 1.829 0.114 0.029
800 1.545 0.106 0.045 1.832 0.104 0.032

δ 50 1.348 0.542 -0.151 1.777 0.415 -0.022
100 1.424 0.434 -0.075 1.756 0.271 -0.043
200 1.421 0.278 -0.078 1.771 0.192 -0.028
400 1.424 0.201 -0.075 1.774 0.134 -0.025
800 1.434 0.152 -0.065 1.772 0.126 -0.027

c 50 0.569 0.547 0.269 0.392 0.247 0.092
100 0.451 0.372 0.151 0.356 0.130 0.056
200 0.384 0.163 0.084 0.336 0.086 0.036
400 0.367 0.110 0.067 0.323 0.055 0.023
800 0.349 0.074 0.049 0.324 0.053 0.024

×
[
1− exp

(
−2

(
1− (1 + bx)−a

(1 + bx)−a

))]θ−1

,

fBOL−U (x; a, b, λ, θ) =
1

B(a, b)

[
1− λ+ (1− x/θ)

(1 + λ)(1− x/θ)
exp

{
−λ

x

(θ − x)

}]a−1

×
[

λ+ (1− x/θ)

(1 + λ)(1− x/θ)
exp

{
−λ

x

(θ − x)

}]b−1
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× λ2

(1 + λ)

θ2

(θ − x)3
exp

{
−λ

x

(θ − x)

}
.

For the ELOLLOW distribution, we considered the case when α = 1.

6.1 Cancer patients data
We fit the EHL-LLoGW distribution to the data set on remission times (months) of
128 bladder cancer patients (Lee et al. (2003) for details). The observations are as
follows: 0.08, 4.98, 25.74, 3.7, 10.06, 2.69, 7.62, 1.26, 7.87, 4.4, 2.02, 21.73, 2.09, 6.97,
0.5, 5.17, 14.77, 4.18, 10.75, 2.83, 11.64, 5.85, 3.31, 2.07, 3.48, 9.02, 2.46, 7.28, 32.15,
5.34, 16.62, 4.33, 17.36, 8.26, 4.51, 3.36, 4.87, 13.29, 3.64, 9.74, 2.64, 7.59, 43.01, 5.49,
1.4, 11.98, 6.54, 6.93, 6.94, 0.4, 5.09, 14.76, 3.88, 10.66, 1.19, 7.66, 3.02, 19.13, 8.53,
8.65, 8.66, 2.26, 7.26 ,26.31, 5.32, 15.96, 2.75, 11.25, 4.34, 1.76, 12.03, 12.63, 13.11,
3.57, 9.47, 0.81, 7.39, 36.66, 4.26, 17.14, 5.71, 3.25, 20.28, 22.69, 23.63, 5.06, 14.24,
2.62, 10.34, 1.05, 5.41, 79.05, 7.93, 4.5, 2.02, 0.2, 7.09, 25.82, 3.82, 14.83, 2.69, 7.63,
1.35, 11.79, 6.25, 3.36, 2.23, 9.22, 0.51, 5.32, 34.26, 4.23, 17.12, 2.87, 18.1, 8.37, 6.76,
3.52, 13.8, 2.54, 7.32, 0.9, 5.41, 46.12, 5.62, 1.46, 12.02, 12.07.

Table 4: Parameter estimates for various models fitted for cancer patients data set
Estimates

Model α β δ c −2 logL
EHL-LLoGW 0.8611 0.5191 6.7157 0.0316 819.4

(0.5676) (0.1368) (4.2266) (0.3098)
a b α β

BW 2.7348 0.9082 0.3216 0.6661 821.7
(1.6011) (1.5188) (0.4382) (0.2455)

a b α β
KwW 25.6701 26.2789 24.3275 0.1398 821.5

(4.1821) (0.1662) (22.6131) (0.1417)
β λ θ γ

ELOLLW 6.1173 ×10−5 0.0378 2.9053 1.0478 828.2
(0.4015) (0.0061) (8.4383 ×10−5) (0.0676)

a b α θ
TL-WLx 0.5080 0.2070 1.0718 1.5290 820.8

(0.4034) (0.2299) (0.6874) (1.1199)
a b λ θ

BOL-U 1.1799 2.8446 3.2800×105 7.6115 ×106 826.6
(0.1329) (0.3599) (3.1630 ×10−6) (1.3631 ×10−7)

Table 5: Goodness-of-fit statistics for various models fitted for cancer patients data set
Model AIC AICC BIC W ∗ A∗ KS P − value

EHL-LLoGW 827.8 828.1 839.2 0.0235 0.1530 0.0352 0.9974
BW 829.7 830.0 841.1 0.0436 0.2882 0.04495 0.9582
KwW 829.3 829.6 840.7 0.0452 0.2994 0.0471 0.9392

ELOLLW 836.2 836.5 847.6 0.1314 0.7864 0.0670 0.5573
TL-WLx 828.8 829.1 840.2 0.0372 0.2469 0.04287 0.9727
BOL-U 834.6 835.0 846.0 0.1186 0.7118 0.0734 0.4955
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Figure 2: Plots of the fitted curves and probabilities for cancer patients data.

The estimated variance-covariance matrix is given by 0.3222 −0.0762 2.3705 −0.1605
−0.0762 0.0187 −0.5568 0.0357
2.3705 −0.5568 17.8644 −1.1712
−0.1605 0.0357 −1.1712 0.0960


and the 95% confidence intervals for the model parameters are given by

α ∈ [0.8611± 1.1125], β ∈ [0.5191± 0.2681], δ ∈ [6.7157± 8.2842], c ∈ [0.0316± 0.6072].

The results shown in Table 5 confirm that the EHL-LLoGWmodel is a better model
compared to the other models considered in this paper since it has the lowest values
for the goodness-of-fit statistics and the highest p-value for the K-S statistic. Thus,
we conclude that the EHL-LLoGW model fit the cancer patients data better than the
other models BW, KwW, ELOLLW, TL-WLx and BOL-U.

6.2 Silicon nitride data
The second data set represents fracture toughness of silicon nitride measured in MPa
m1/2. The data set was also analyzed by Chipepa et al. (2020). The data are: 5.50,
5.00, 4.90, 6.40, 5.10, 5.20, 5.20, 5.00, 4.70, 4.00, 4.50, 4.20, 4.10, 4.56, 5.01, 4.70, 3.13,
3.12, 2.68, 2.77, 2.70, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 2.04, 2.08, 2.13,
3.80, 3.73, 3.71, 3.28, 3.90, 4.00, 3.80, 4.10, 3.90, 4.05, 4.00, 3.95, 4.00, 4.50, 4.50, 4.20,
4.55, 4.65, 4.10, 4.25, 4.30, 4.50, 4.70, 5.15, 4.30, 4.50, 4.90, 5.00, 5.35, 5.15, 5.25, 5.80,
5.85, 5.90, 5.75, 6.25, 6.05, 5.90, 3.60, 4.10, 4.50, 5.30, 4.85, 5.30, 5.45, 5.10, 5.30, 5.20,
5.30, 5.25, 4.75, 4.50, 4.20, 4.00, 4.15, 4.25, 4.30, 3.75, 3.95, 3.51, 4.13, 5.40, 5.00, 2.10,
4.60, 3.20, 2.50, 4.10, 3.50, 3.20, 3.30, 4.60, 4.30, 4.30, 4.50, 5.50, 4.60, 4.90, 4.30, 3.00,
3.40, 3.70, 4.40, 4.90, 4.90, 5.00.

The estimated variance-covariance matrix for model based on silicon nitride data
set is  7.3626× 10−9 7.1721× 10−7 5.8061× 10−7 −4.1182× 10−6

7.1721× 10−7 3.3731× 10−4 2.7307× 10−4 −1.9368× 10−3

5.8062× 10−7 2.7307× 10−4 2.2107× 10−4 −1.5679× 10−3

−4.1182× 10−6 −1.9368× 10−3 −1.5679× 10−3 1.1121× 10−2





The exponentiated half logistic-log-logistic Weibull distribution 116

Table 6: Parameter estimates for various models fitted for silicon nitride data set
Estimates

Model α β δ c −2 log L
EHL-LLoGW 8.1×10−4 4.6814 6.9829 1.3671 335.0

(8.6×10−05) (1.8×10−02) (1.5×10−02) (1.1×10−01)
a b α β

BW 0.8013 12.3333 0.01298 5.6883 337.1
(0.3130) (5.2 ×10−4) (0.0056) (1.4291)

a b α β
KwW 0.95740 447.3400 0.0620 5.1840 337.4

(0.8392) (8.7 ×10−5) (5.3 ×10−3 ) (1.7847)
β λ θ γ

ELOLLW 1.0558 0.2683 0.6356 4.2260 336.4
(0.3108) (0.0703) (0.5092) (0.5822)

a b α θ
TLWLx 1.4694 0.1100 4.8479 0.8960 337.1

(1.8065) (0.1677) (1.9954) (0.3688)
a b λ θ

BOLU 11.2231 108.6889 0.7531 19.9588 347.3
(1.2051) (0.0046) (0.1081) (1.2296)

Table 7: Goodness-of-fit statistics for various models fitted for silicon nitride data set
Model AIC AICC BIC W ∗ A∗ KS P − value

EHL-LLoGW 343.0 343.4 354.1 0.0602 0.3585 0.0568 0.8368
BW 345.1 345.4 356.2 0.0830 0.5025 0.0689 0.6141
KwW 345.4 345.8 356.6 0.0927 0.5689 0.0716 0.5647

ELOLLW 344.4 344.8 355.6 0.0698 0.4309 0.0628 0.7363
TLWLx 345.1 345.5 356.3 0.0828 0.5025 0.0692 0.6182
BOLU 355.3 355.6 366.4 0.2288 1.4031 0.0844 0.364

and the 95% confidence intervals for the model parameters are

α ∈ [8.0851× 10−4 ± 0.0002], β ∈ [4.6814± 0.0360],

δ ∈ [6.9829± 0.0291], c ∈ [1.3671± 0.2067].

Furthermore, based on results shown in Table 7, the EHL-LLoGW has the smallest
values for the goodness-of-fit statistics and the highest P-value for the K-S statistic
compared to the other models considered. Therefore, we conclude that the EHL-
LLoGW model fit the silicon nitride data better than the non-nested models BW,
KwW, ELOLLW, TL-WLx and BOL-U distributions. Also, Figure 3 show that our
proposed model fit the silicon nitride data set better than the selected competing
models.

6.3 Kevlar 49/epoxy strands failure at 90% data
The third data set is reported by Andrews et al. (2012) and also by Barlow et al.
(1984), which represents failure times (in hours) of kevlar 49/epoxy strands subjected
to constant sustained pressure at the 90% stress level. The data set was also analyzed
by Chipepa et al. (2020). The observations are as follows: 0.01, 0.01, 0.02, 0.02, 0.02,
0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13,
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Figure 3: Plots of the fitted curves and probabilities for silicon nitride data.

0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54,
0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83,
0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20,
1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60,
1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.
The estimated variance-covariance matrix for EHL-LLoGWmodel based on kevlar data
set is given by  0.2340 −0.1059 0.2550 −0.1957

−0.1059 0.0624 −0.1114 0.0769
0.2550 −0.1114 0.3025 −0.2344
−0.1957 0.0769 −0.2344 0.2010


and the 95% confidence intervals for the model parameters are
α ∈ [0.8574 ± 0.9482], β ∈ [0.9914 ± 0.4895], δ ∈ [1.1002 ± 1.0779] and c ∈ [0.6497 ±
0.8788].

Table 8: Parameter estimates for various models fitted for kevlar data set
Estimates

Model α β δ c −2 log L
EHL-LLoGW 0.8575 0.9914 1.1002 0.6497 204.5

(0.4838) ( 0.2497) (0.5500) (0.4484)
a b α β

BW 0.7485 572.05 0.0023 1.1084 205.5
(0.3056) (1.0355 ×10−8) (0.0026) (0.2940)

a b α β
KwW 19.4050 2.4710 ×104 0.2620 0.0762 206.9

(5.8370) (8.1472) (0.2491) (0.5153)
β λ θ γ

ELOLLW 7.0692 0.1556 7.3936 0.8374 205.2
(4.1287) (0.1115) (3.9446) (0.1094)

a b α θ
TL-WLx 0.6616 0.7096 1.3633 0.6079 205.4

(0.6595) (0.9639) (0.9469) (0.4456)
a b λ θ

BOL-U 0.8718 7.3537 3.0051 ×104 2.5755 ×105 205.7
(0.1068) (1.1462) (2.7847 ×10−4) (3.2491 ×10−5)
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Table 9: Parameter estimates and goodness-of-fit statistics for various models fitted
for kevlar data set

Model AIC AICC BIC W ∗ A∗ KS P − value
EHL-LLoGW 212.5 212.9 223.0 0.1350 0.8153 0.0743 0.6326

BW 213.5 213.9 224.0 0.1613 0.9408 0.0834 0.4834
KwW 214.9 215.3 225.3 0.2405 1.3119 0.0983 0.2835

ELOLLW 213.2 213.6 223.7 0.1666 0.9601 0.0816 0.5123
TL-WLx 213.4 213.8 223.9 0.1625 0.9447 0.0835 0.4825
BOL-U 213.7 214.1 224.1 0.1819 1.0330 0.0896 0.3927

Results shown in Table 9 further confirms that the EHL-LLoGW model is indeed
a better model compared to the other selected models. Thus, we conclude that the
EHL-LLoGW model fit the kevlar data better than the other models: BW, KwW,
ELOLLW, TL-WLx and BOL-U distributions. Also, Figure 4 show that our proposed
model performs better than the competing models on kevlar data.

Figure 4: Plots of the fitted curves and probabilities for kevlar data.

7 Conclusions
We have presented a generalized distribution, referred to as the Exponentiated Half
Logistic-Log-Logistic Weibull (EHL-LLoGW) distribution. Statistical properties of
the EHL-LLoGW distribution were also derived. We obtained maximum likelihood
estimates of the parameters of the EHL-LLoGW distribution. A simulation study
was conducted to assess the consistency of the maximum likelihood estimates. The
applications provided showed that EHL-LLoGW distribution is suitable for modeling
heavy tailed and almost symmetric data sets.
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Appendix
The following URL contains all computational codes.
https://drive.google.com/drive/folders/1eU42GCNBMCMDhpkcXrhVxZsZek-8c3Nj?
usp=sharing


