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Abstract: In this paper, we introduce the hyperbolic tan-X family of distributions
as a new statistical distribution defined by a trigonometric function. Some properties
and applications of the new family are investigated in some detail. A characterization
theorem extending the new class of statistical distributions is also considered. Avenues
for further research are also presented.
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1 Introduction
Statistical distributions defined by trigonometric functions have received considerable
attention in the literature. In Mahmood et al. (2019) they introduced the N-sine-G
family of distributions based on a sine transformation. In Kumar et al. (2015), a
new lifetime distribution is proposed by the use of the Sine function in terms of some
lifetime distribution as baseline distribution. In Jamal and Chesneau (2019), the new
family is defined by a quotient of two functions using polynomial, exponential, sine,
and cosine functions. Further studies include the cosine distribution (Raab and Green,
1961), the beta trigonometric distribution (Nadarajah and Kotz, 2006), the Von-Mises
distribution (Evans et al., 2000; Strukov, 2013), the sine square distribution (Al-Farris
and Khan, 2008), and the sin-skew logistic distribution (Chakraborty et al., 2012).

In this study, we continue to add to the class of statistical distributions, that can
be defined using trigonometric functions, we propose the class of hyperbolic tan-X
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distributions, and study in some detail their properties, with applications. A char-
acterization extending the new family is also considered. As the class of statistical
distributions that can be defined by trigonometric functions is limited, the main aim
in introducing this new family is to provide the researcher with more choice when it
comes to selecting a particular trigonometric distribution. The hope is that this class
of distributions will provide consistently better fits, than other distributions in the
statistical modeling of data.

This paper is organized as follows. In Section 2, the probability density function
(PDF) and the cumulative density function (CDF) of the new family are defined.
In Section 3, a sub-model of the new family is presented, namely hyperbolic tan-
normal, and the PDF, CDF, hazard function (HF), and survival function (SF) are
visualized. Section 4 is devoted to some statistical properties of the new family, there
we obtain an expansion for the PDF and CDF, the quantile function, rth non-central
moments, Renyi entropy, and moment generating function. In Section 5, the method
of maximum likelihood in estimating model parameters is discussed, and in Section
6 a Monte Carlo simulation study is carried out to assess the performance of the
method of maximum likelihood. In section 7, we demonstrate the usefulness of the new
family to a data set coming from the material and chemical engineering sciences. A
characterization theorem extending the new family in terms of the hazard rate function
of a random variable is presented in Section 8. The paper is concluded in Section 9,
where we recommend to the reader to obtain some properties and applications of the
exponentiated hyperbolic tan-X family of distributions.

2 A new family
A random variable J will be said to follow the hyperbolic tan-X family of distributions
if its CDF is given by

G(x; ξ) = Tanh(3πF (x; ξ)),

where x ∈ Supp(F ), and ξ is a vector of parameters in the baseline distribution de-
pending on F . The PDF of the new family is given by

g(x; ξ) = 3πf(x; ξ)sech2(3πF (x; ξ)),

where f is the PDF of the baseline distribution.
To define the new distribution, we modified the argument of Tanh(x), so that the

resulting function is a proper distribution function.

3 A sub-model of the new family
The sub-model is called the hyperbolic tan-normal family of distributions. The PDF
is given by

f(x; a, b) =
3
√

π
2 e

− (a−x)2

2b2 sech2
(

3
2πerfc

(
a−x√

2b

))
b

,
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the CDF is given by

F (x; a, b) = tanh

(
3

2
πerfc

(
a− x√

2b

))
.

The survival function (SF) is given by

S(x; a, b) = 1− tanh

(
3

2
πerfc

(
a− x√

2b

))
,

and the hazard rate function (HF) is given by

H(x; a, b) =
3
√

π
2 e

− (a−x)2

2b2 sech2
(

3
2πerfc

(
a−x√

2b

))
b
(
1− tanh

(
3
2πerfc

(
a−x√

2b

))) ,

where erfc(z) = 1 − 2√
π

∫ z

0
e−t2dt is the complementary error function. We write

K ∼ HTN(a, b) if the random variable K follows the hyperbolic tan-normal family of
distributions.

Figure 1: The CDF (red), PDF(blue), SF(purple), and HF(green) of HTN(5.60249,1.76943).

4 Some mathematical properties
4.1 Expansion for the CDF
Since Tanh(x) = e2x−1

e2x+1 , then using the power series representation of the exponential

function we can write e2x =
∑∞

q=0
(2x)q

q! . Therefore, Tanh(x) =
∑∞

q=0
(2x)q

q! −1∑∞
q=0

(2x)q

q! +1
. Hence,

G(x; ξ) = Tanh(3πF (x; ξ)) =
∑∞

q=0
(6πF (x;ξ)))q

q! − 1∑∞
q=0

(6πF (x;ξ)))q

q! + 1
.
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4.2 Expansion for the PDF
Since Sech(x) = 2ex

e2x+1 , then,

g(x; ξ) = 3πf(x; ξ)sech2(3πF (x; ξ)) =
12πf(x; ξ)e6πF (x;ξ)

(e6πF (x;ξ) + 1)2
.

By using the negative binomial series and the power series representation for the ex-
ponential function, we can write

g(x; ξ) =

∞∑
k=0

∞∑
q=0

Ωk,qf(x)F (x)
q,

where Ωk,q = 12π(−1)k
(
1+k
k

) (6π(k+1))q

q! .

4.3 Quantile function
Let 0 < p < 1. we must solve the equation p = Tanh(3πF (Q(p))) with respet to Q(p).
This yields

Q(p) = F−1

[
1

3π
Tanh−1(p)

]
,

where F−1 is the quantile function of the baseline distribution with CDF F (x).

4.4 Moments
Observe that if U is uniform on (0, 1), then the random variable

X = F−1

[
1

3π
Tanh−1(U)

]
,

follows the hyperbolic tan-x family of distributions. According to Nasiru et al. (2017),
we can write

QX(u) =

∞∑
i=0

hiu
i,

where the coefficients are suitably chosen real numbers that depend on the parameters
of the F (x) distribution. For a power series raised to a positive integer r ≥ 1, we have

(QX(u))r =

( ∞∑
i=0

hiui

)r

=

∞∑
i=0

δr,iu
i,

where δr,i are obtained from δr,i = (ih0)
−1
∑i

s=1[s(r + 1) − i]hsδr,i−s with δr,0 = hr0
for i = 1, 2, · · · (Gradshteyn et al, 2007). Thus, we have

µ′
r =

∞∑
i=0

δr,iE

[(
1

3π
Tanh−1(U)

)i]
,
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where E(·) is an expectation. Since Tanh−1(U) = 1
2 ln

(
1+U
1−U

)
, we can observe

(
1

3π
Tanh−1(U)

)i

=

(
1

6π

)i
(
ln

(
1− 2U

U − 1

))i

.

By equation (3.18), (Almheidat et al., 2015) we can write(
ln

(
1− 2U

U − 1

))i

= (−1)−ii

∞∑
m=0

m∑
j=0

(−1)m+j

i− j

(
m− i

m

)(
m

j

)
ρj,m

(
2U

U − 1

)i+m

,

where ρj,m are calculated from equation (3.19) (Almheidat et al., 2015). Put

Ωi,m,j = δr,i

(
1

6π

)i

(−1)−ii
(−1)m+j

i− j

(
m− i

m

)(
m

j

)
ρj,m.

Then,

µ′
r =

∞∑
i=0

∞∑
m=0

m∑
j=0

Ωi,m,jE

[(
2U

U − 1

)i+m
]
.

4.5 Renyi entropy
Since

g(x; ξ) = 3πf(x; ξ)sech2(3πF (x; ξ)) =
12πf(x; ξ)e6πF (x;ξ)

(e6πF (x;ξ) + 1)2
,

we first find an expansion for g(x)δ where δ > 0, and δ 6= 1. By the negative binomial
series we can write

(e6πF (x) + 1)−2δ =

∞∑
q=0

(−1)q
(
2δ + q − 1

q

)
e6πF (x)q.

By the power series representation for the exponential function, we can write e6πF (x)q =∑∞
m=0

(6πF (x)q)m

m! . We can also write e6πF (x)δ =
∑∞

k=0
(6πF (x)δ)k

k! . Put

Ωk,q,m = (12π)δ
(6πδ)k

k!
(−1)q

(
2δ + q − 1

q

)
(6πq)m

m!
,

then

g(x)δ =

∞∑
k=0

∞∑
q=0

∞∑
m=0

Ωk,q,mf(x)
δF (x)k+m.

Thus, the Renyi entropy is

IR(δ) =
1

1− δ
log

( ∞∑
k=0

∞∑
q=0

∞∑
m=0

Ωk,q,m

∫ ∞

−∞
f(x)δF (x)k+mdx

)
.
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4.6 Moment generating function
Given a random variable X, the moment generating function is defined as

MX(z) = E[ezX ]

where E[·] is an expectation. Using the series expansion for ezX , one can writeMX(z) =∑∞
r=0

zrµ′
r

r! , where µ′
r is the rth non-central moment of the random variable X. Thus,

the moment generating function of the hyperbolic tan-X family of distributions is given
by

∞∑
r=0

∞∑
i=0

∞∑
m=0

m∑
j=0

zrΩi,m,j

r!
E

[(
2U

U − 1

)i+m
]
,

where U is uniform random variable on (0, 1) and Ωi,m,j is defined as in Section 5.4

5 Parameter estimation
The method of maximum likelihood is used in this paper to estimate model param-
eters. Here we discuss this method for the hyperbolic tan-X family of distributions.
Suppose x1, x2, · · · , xn is a random sample of size n from the hyperbolic tan-X family
of distributions. It can be shown that the total log-likelihood function is given by

lnL =

n∑
i=1

{
ln(3π) + ln f(xi; ξ) + 2 ln(sec(3πF (xi; ξ)))

}
,

where ξ is a vector of parameters associated with the baseline distribution. Partial
differentiation of the total log-likelihood function with respect to model parameters
gives the following as the score function

∂ lnL

∂ξ
=

n∑
i=1

{
∂f(xi,ξ)

∂ξ

f(x; ξ)
+ 6πf(xi; ξ) tan(3πF (xi; ξ))

}
.

Equating the score function to zero and numerically solving the equation using
techniques such as the quasi Newton-Raphson method, gives the maximum likelihood
estimates for the model parameters. Let 4 = (ξ), to construct confidence intervals
for the parameters in the hyperbolic tan-X family of distributions, the observed infor-
mation matrix, call it J(4), can be used due to the complex nature of the expected
information matrix. The observed information matrix is given by

J(4) = −
[
∂2lnL
∂ξ∂ξ

]
.

When the usual regularity conditions are satisfied and that the parameters are
within the interior of the parameter space, but not on the boundary, the distribution
of

√
n(4̂−4) converges to the multivariate normal distribution Np(0, I

−1(4)), where
I(4) is the expected information matrix, and it is assumed that ξ = (ξ1, · · · , ξp).
The asymptotic behavior remains valid when I(4) is replaced by the observed infor-
mation matrix evaluated at J(4̂). The asymptotic multivariate normal distribution
Np(0, J

−1(4̂)) is a very useful tool for constructing an approximate 100(1−ψ)% two-
sided confidence intervals for the model parameters, where ψ is the significance level.
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6 Monte Carlo simulation study
In this section, we show that the method of maximum likelihood is adequate in estimat-
ing the parameters in the hyperbolic tan-X family. For this, a Monte Carlo simulation
study is carried out to assess the performance of the estimation method in the hyper-
bolic tan-normal (HTN) sub-model. Samples of sizes 200, 400, 500, and 700, are drawn
from the HTN distribution, and the samples have been drawn for the following set of
parameters

(a) Set I: (a, b) = (0.3, 0.5)

(b) Set II: (a, b) = (0.5, 0.3)

The maximum likelihood estimators for the parameters alpha and beta are obtained.
The procedure has been repeated 400 times, and the mean and standard deviation for
the estimates are computed, and the results are summarized in Tables 1 and 2 for
each of sets I and II, respectively. From these tables, we can find that the simulated
estimates are close to the true values of the parameters and hence the estimation
method is adequate. We have also observed that the estimated standard deviation
consistently decreases with increasing sample size as can been seen by plotting the
standard deviation against the sample size. Overall the simulation study conducted,
indicated that using the method of maximum likelihood in estimating model parameters
is adequate.

Table 1: Result of simulation study for set I.
Parameter Sample Size Average Estimate Standard Deviation

a 200 0.294 0.044
400 0.298 0.028
500 0.298 0.026
700 0.298 0.020

b 200 0.497 0.028
400 0.499 0.018
500 0.499 0.017
700 0.499 0.014

Table 2: Result of simulation study for set II.
Parameter Sample Size Average Estimate Standard Deviation

a 200 0.496 0.026
400 0.499 0.016
500 0.499 0.015
700 0.498 0.012

b 200 0.298 0.017
400 0.299 0.011
500 0.299 0.010
700 0.299 0.008
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7 Applications
Here we demonstrate the usefulness of the new family to the breaking stress of carbon
fibers data, Table 2 (Alzaatreh et al., 2014). The PDF and CDF of the submodel of the
new family that we consider is already given in Section 3. The other competing models
are the Hyperbolic Sine-Weibull (HSW), and the hyperbolic cosine-logistic distribution
(HCL). For the HSW distribution, the PDF is

w(x; a, b, c) =
2abcxb−1ea−cxb

sinh
(
a
(
1− e−cxb

))
(ea − 1)

2 ,

the CDF is

W (x; a; b, c) =
2ea

(
cosh

(
a
(
1− e−cxb

))
− 1
)

(ea − 1)
2 ,

the survival function (SF) is given by

SW (x; a, b, c) = 1−
2ea

(
cosh

(
a
(
1− e−cxb

))
− 1
)

(ea − 1)
2 ,

and hazard function (HF) is given by

Hw(x; a, b, c) =
2abcxb−1ea−cxb

sinh
(
a
(
1− e−cxb

))
(ea − 1)

2

(
1− 2ea(cosh(a(1−e−cxb))−1)

(ea−1)2

) .
We write P ∼ HSW (a, b, c), if P is a hyperbolic sine-Weibull random variable.

Figure 2: The CDF (red), PDF(blue), SF(green), and HF(purple) of HSW(0.0000304063, 2.34175,
0.119485 )

For the hyperbolic cosine-logistic distribution, the CDF is given by

L(x; a, c, d) =

2ea sinh

(
a

e−
x−c
d +1

)
e2a − 1

,
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the PDF given by

l(x; a, c, d) =

2aea−
x−c
d cosh

(
a

e−
x−c
d +1

)
(e2a − 1) d

(
e−

x−c
d + 1

)2 ,

the Surival function is given by

SL(x; a, c, d) = 1−
2ea sinh

(
a

e−
x−c
d +1

)
e2a − 1

,

and Hazard function is given by

Hl(x; a, c, d) =

2aea−
x−c
d cosh

(
a

e−
x−c
d +1

)

(e2a − 1) d
(
e−

x−c
d + 1

)21−
2ea sinh

(
a

e
− x−c

d +1

)
e2a−1


.

We write K ∼ HCL(a, c, d), if K is a hyperbolic cosine-logistic random variable.

Figure 3: The CDF (red), PDF(green), SF(blue), and HF(purple) of HCL(0.0170707, 2.77939,
0.494615)

Table 3: Estimates for the parameters of fitted distribution
Distribution Parameters Estimates Standard error

HTN â 5.603059 0.2602749
b̂ 1.769822 0.1690595

HSW â 4.2595809 1.8205297
b̂ 1.9415779 0.3295281
ĉ 0.2628609 0.1352378

HCL â 1.9609166 1.18744335
ĉ 2.4365866 0.32169502
d̂ 0.4851145 0.05256767
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Figure 4: The CDF’s of HTN (red), HSW (blue), and HCL (purple) fitted to the empirical distri-
bution of Table 2 (Alzaatreh et.al (2014))

Figure 5: The PDF’s of HTN (red), HSW(blue), and HCL (purple) fitted to the histogram of Table
2 (Alzaatreh et.al (2014))

Using the R software, we report the estimates for the parameters in each of the three
distributions alongside their standard errors in Table 3. The fitted CDFs to the carbon
fibers data are shown in Figures 3 and 4. The measures of goodness of fit we con-
sider include Bayesian information criterion (BIC), negative Log-Likelihood, Cramer
von-Misses (W), Anderson Darling (A), KS (Kolmogorov Smirnov), AIC (Akaike’s In-
formation Criterion), CAIC (Consistent Akaike’s Information Criterion), and HQIC
(Hannan-Quinn information criterion), and they are reported in Table 4 below. Whilst
it appears from the fits above, that all the distributions are competitive in fitting
the breaking stress of carbon fibers data, Table 4 reveals that HCL is slightly better
than HTN, but HCL is better than HSW. However, HTN is better than HSW. Over
the new family should be highly selective among researchers with an interest in using
trigonometric distributions in statistical modeling.



11 C.B. Ampadu

Table 4: Goodness of fit measures.
HTN HSW HCL

W 0.051 0.111 0.046
A 0.398 0.593 0.280

KS statistic 0.073 0.078 0.057
KS p-value 0.864 0.808 0.981

AIC 176.074 179.061 176.404
CAIC 176.265 179.448 176.791
BIC 180.453 185.630 182.973

HQIC 177.805 181.657 179.000
-Log(likelihood) 86.0372 86.530 85.202

8 A characterization theorem
It is well known that the hazard function, hF , of a twice differentiable function, F ,
satisfies the first-order differential equation

f ′(x)

f(x)
=
h′F (x)

hF (x)
− hF (x).

In this section, we present a Weibull-hyperbolic tan X distribution. The result here is
inspired by Alizadeh et al. (2018). First, let us introduce the following.

Definition 8.1. We say a random variable X follows a Weibull-G distribution if its
CDF is given by

F (x; ξ) = 1− e
−

(
G(x;ξ)

G(x;ξ)

)α

,

where G is some baseline distribution, x ∈ Supp(G), and ξ is a vector of parameters
in the baseline distribution whose support depends on G, and α > 0, and G = 1−G.

The PDF of the Weibull-G distribution is given by

f(x; ξ) = αg(x; ξ)
G(x; ξ)α−1

G(x; ξ)
α+1 e

−

(
G(x;ξ)

G(x;ξ)

)α

,

where g is the PDF of the baseline distribution. Clearly, the hazard rate function of
the Weibull-G distribution is given by

hF (x; ξ) = αg(x; ξ)
G(x; ξ)α−1

G(x; ξ)
α+1 .

Theorem 8.2. Let X : Ω 7→ R be a continuous random variable. The PDF of X is

αg(x; ξ)
G(x; ξ)α−1

G(x; ξ)
α+1 e

−

(
G(x;ξ)

G(x;ξ)

)α

,
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for some baseline distribution with PDF g, CDF G, α > 0, and G = 1−G, if and only
if its hazard rate function hF (x) satisfies the following differential equation

h′F (x)− g′(x)g(x)−1hF (x) = αg(x)
d

dx

G(x)α−1

G(x)
α+1 ,

with x ∈ R, with initial condition hF (0) = 0 for α > 1.

Proof. If X has PDF as stated in the theorem, then the differential equation as stated
in the theorem holds. Now if the stated differential equation holds, then

d

dx

{
g(x)−1hF (x)

}
= α

d

dx

G(x)α−1

G(x)
α+1 ,

or

hF (x; ξ) = αg(x; ξ)
G(x; ξ)α−1

G(x; ξ)
α+1 ,

which is the hazard function of Weibull-G

Characterization of the Weibull-hyperbolic tan X distribution. is obtained from the
above theorem by letting the baseline PDF and CDF be given as in Section 2.

9 Conclusions
In this paper, a new class of statistical distribution is introduced. Mathematical prop-
erties such as expansion for CDF and PDF, quantile function, rth non-central moments,
Renyi entropy, and moment generating function are studied in detail. The method of
maximum likelihood is used to estimate model parameters. A simulation study is con-
ducted to determine the effectiveness of the maximum likelihood estimation method.
Application to real data is illustrated to show the usefulness of the new family. A
characterization theorem extending the new family is also presented.

As a further recommendation, we suggest obtaining some properties and applica-
tions of a so-called exponentiated hyperbolic-tan X family of distributions. The CDF
of the new family is given by

G(x; ξ, a) = tanha(3πF (x; ξ)),

and the PDF is given by

g(x; ξ; a) = 3πaf(x; ξ)sech2(3πF (x; ξ)) tanha−1(3πF (x; ξ)),

where the baseline distribution has CDF F (x) and PDF f(x), a > 0; ξ is a vector of
parameters in the baseline distribution.
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