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Abstract: A new family of distributions referred to as the exponentiated half logistic
odd Weibull-Topp-Leone-G family of distributions is developed. We derive statistical
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1 Introduction
Generalized distributions from baseline distributions has become an important tool in
statistical modeling. The generalized distributions are connected or linked to other use-
ful distributions, which makes the derivation of useful statistical properties important.
These generalized distributions produces a wide range of distributions since the baseline
distribution may vary depending on the researcher’s interests. Therefore, generalized
distributions produces models that can be applied to a wide range of phenomena.

Available in the literature are various methods for generalizing baseline distributions
by adding one or more extra parameters to the distribution. Some of the generalizations
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are the exponentiated families of distributions by Mudholkar and Srivastava (1993),
Gupta et al. (1998), Nadarajah and Kotz (2006), Lemonte et al. (2013), Lemonte (2013),
Huang and Oluyede (2014), and Cordeiro et al. (2013), Marshall-Olkin generated fam-
ilies by Marshall and Olkin (1997) and Pakungwati et al. (2018), the Kumaraswamy-
generated families by Cordeiro et al. (2010), Alizadeh et al. (2015), and Chipepa et al.
(2019b), the beta-generated families by Eugene et al. (2002), Jones (2004), and Chipepa
et al. (2019a)), gamma-generated families by Zografos and Balakrishnan (2009), Ristić
and Balakrishnan (2012), and Foya et al. (2017)), half-logistic-generated families by
Cordeiro et al. (2016), Topp-Leone generated by Al-Shomrani et al. (2016) and Chipepa
et al. (2020), and half-logistic families by Afify et al. (2017), Korkmaz et al. (2018a)
and Cordeiro et al. (2017), to mention a few.

We were motivated by the desirable properties exhibited by the new proposed family
of distributions. The new distribution (i) contains new and some well known exponen-
tiated families of distributions; (ii) is flexibility in data fitting; (iii) exhibits a variety of
shapes of the hazard rate function. We hope this new generalized family of distributions
will receive much attention from both applied and theoretical statisticians.

The rest of the paper is organized as follows: In Section 2, we present the new
family of distributions namely the exponentiated half logistic odd Weibull-Topp-Leone-
G (EHLOW-TL-G) family of distributions and model properties. We estimate the
parameters of the model in Section 3. Special cases are presented in Section 4. A
simulation study is contacted in Section 5. Inference results are given in Section 6,
followed by concluding remarks.

2 The model
In this section, a new model is proposed, namely, EHLOW-TL-G family of distribu-
tions. We also derive the statistical properties of the new family of distributions which
include expansion of probability density function (pdf), quantile function, moments and
generating function, entropy, distribution of order statistics and probability weighted
moments.

Cordeiro et al. (2016) developed the type I half-logistic family of distributions with
cumulative distribution function

F (x;λ, ζ) =

∫ − log(Ḡ(x;ζ))

0

2λe−λt

(1 + e−λt)2
dt =

Ḡλ(x; ζ)

1 + Ḡλ(x; ζ)
,

for λ > 0. Also, Al-Shomrani et al. (2016) developed the Topp-Leone-G (TL-G) family
of distributions with cdf given by

G
TL−G

(x, ζ) = [1−G
2
(x; ζ)]b, (1)

for b > 0 and parameter vector ζ. Using the generalization by Gurvich et al. (1997),
the cdf of the odd Weibull-Topp-Leone-G distribution is given by

F (x; b, β, ζ) = 1− exp

{
−
[

[1−G
2
(x; ζ)]b

[1− (1−G
2
(x; ζ))b]

]β}
. (2)
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Therefore, the cdf and pdf of EHLOW-TL-G family of distributions are given by

F
EHLOW−TL−G

(x;α, β, δ, ζ) =

[
1− exp(−t)
1 + exp(−t)

]δ
(3)

f
EHLOW−TL−G

(x;α, β, δ, ζ) =
4αβδg(x; ζ)G(x; ζ)[1−G

2
(x; ζ)]αβ−1

(1− [1−G
2
(x; ζ)]α)β+1

× exp(−t)
(1 + exp(−t))2

[
1− exp(−t)
1 + exp(−t)

]δ−1

, (4)

respectively, where t =
[

[1−G2
(x;ζ)]α

1−[1−G2
(x;ζ)]α

]β
for α, β, δ > 0 and ζ is a vector of parameters

from the baseline distribution function G(.).

2.1 Expansion of pdf
By considering the following expansion

(1 + x)b =

∞∑
n=0

(
b

n

)
xn, (5)

we get(
1 + exp

(
−
[

[1−G
2
(x; ζ)]α

1− [1−G
2
(x; ζ)]α

]β))−(δ+1)

=

∞∑
p=0

(−1)p
(
−(δ + 1)

p

)

× exp

(
− p

[
[1−G

2
(x; ζ)]α

1− [1−G
2
(x; ζ)]α

]β)
,

(
1− exp

(
−
[

[1−G
2
(x; ζ)]α

1− [1−G
2
(x; ζ)]α

]β))δ−1

=

∞∑
q=0

(−1)q
(
δ − 1

q

)

× exp

(
− q

[
[1−G

2
(x; ζ)]α

1− [1−G
2
(x; ζ)]α

]β)
,

exp

(
− (p+ q + 1)

[
[1−G

2
(x; ζ)]α

1− [1−G
2
(x; ζ)]α

]β)
=

∞∑
i=0

(−1)i(p+ q + 1)i

i!

× [1−G
2
(x; ζ)]αβi

[1− [1−G
2
(x; ζ)]α]βi

,

so that (4) can be written as

f
EHLOW−TL−G

(x;α, β, δ, ζ) =

∞∑
p,q,i=0

(−1)p+q+i(p+ q + 1)i4αβδ

i!

(
−(δ + 1)

p

)

×
(
δ − 1

q

)
g(x; ζ)G(x; ζ)[1−G

2
(x; ζ)]αβ(i+1)−1

(1− [1−G
2
(x; ζ)]α)β(i+1)+1

.
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Also, considering the expansions

(1− [1−G
2
(x; ζ)]α)−(β(i+1)+1) =

∞∑
m=0

(−1)m
(
−(β(i+ 1) + 1)

m

)
[1−G

2
(x; ζ)]αm,

[1−G
2
(x; ζ)]αβ(i+1)+αm−1 =

∞∑
n=0

(−1)n
(
αβ(i+ 1) + αm− 1

n

)
G

2n
(x; ζ)

G
2n+1

(x; ζ) =

∞∑
w=0

(−1)w
(
2n+ 1

w

)
Gw(x; ζ),

we have

f
EHLOW−TL−G

(x;α, β, δ, ζ) =

∞∑
p,q,i,m,n,w=0

(−1)p+q+i+m+n+w(p+ q + 1)i4αβδ

i!

×
(
−(δ + 1)

p

)(
δ − 1

q

)(
−(β(i+ 1) + 1)

m

)
×
(
αβ(i+ 1) + αm− 1

n

)(
2n+ 1

w

)
g(x; ζ)Gw(x; ζ)

=

∞∑
w=0

ηw+1gw+1(x; ζ), (6)

which is an infinite linear combination of exponentiated-G (Exp-G) distribution, where
gw+1(x; ζ) = (w + 1)g(x; ζ)Gw(x; ζ) is an Exp-G distribution with power parameter
(w + 1) and linear component

ηw+1 =

∞∑
p,q,i,m,n=0

(−1)p+q+i+m+n+w(p+ q + 1)i4αβδ

i!(w + 1)

(
−(δ + 1)

p

)(
δ − 1

q

)

×
(
−(β(i+ 1) + 1)

m

)(
αβ(i+ 1) + αm− 1

n

)(
2n+ 1

w

)
. (7)

We can therefore, derive other statistical properties of the EHLOW-TL-G family of
distributions directly from the Exp-G distribution.

2.2 Sub-Families
We obtain the following as sub-families from the EHLOW-TL-G family of distributions.

• When δ = 1, we obtain the HLOW-TL-G family of distributions.

• When β = 1, we obtain the exponentiated Half Logistic odd exponential-Topp-
Leone-G (EHLOE-TL-G) family of distributions.

• When β = 2, we obtain the exponentiated Half Logistic odd Rayleigh-Topp-
Leone-G (EHLOR-TL-G) family of distributions.
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• When α = 1, we obtain the new family of distributions with cdf given by

F (x;β, δ, ζ) =


1− exp

(
−
[
[1−G2

(x;ζ)]

G
2
(x;ζ)

]β)
1 + exp

(
−
[
[1−G2

(x;ζ)]

G
2
(x;ζ)

]β)

δ

.

• When α = β = 1, we obtain the new family of distributions with cdf given by

F (x; δ, ζ) =

1− exp

(
−
[
[1−G2

(x;ζ)]

G
2
(x;ζ)

])
1 + exp

(
−
[
[1−G2

(x;ζ)]

G
2
(x;ζ)

])

δ

.

• When α = β = δ = 1, we obtain the new family of distributions with cdf given
by

F (x; ζ) =

1− exp

(
−
[
[1−G2

(x;ζ)]

G
2
(x;ζ)

])
1 + exp

(
−
[
[1−G2

(x;ζ)]

G
2
(x;ζ)

])
 .

2.3 Moments and generating function
In this section, we derive the ordinary moment, central moment, incomplete moment
and generating function of the EHLOW-TL-G family of distributions. We use results
of series expansion presented in Section 2.1 to derive the above properties. Let Zw+1

be an Exp-G distribution with power parameter (w+1), then the rth ordinary moment
of the EHLOW-TL-G is given by

µ′
r = E(Xr) =

∞∑
w=0

ηw+1E(Zrw+1), (8)

where ηw+1 is given by (7) and E(Zrw+1) is the rth moment of the Exp-G distribution.
Also, the sth central moment of X is given by

µs =

s∑
r=0

(
s

r

)
(−µ′

1)
s−rE(Xr) =

s∑
r=0

∞∑
w=0

ηw+1

(
s

r

)
(−µ′

1)
s−rE(Zrw+1).

Furthermore, the rth incomplete moment of X is given by

ϕr(z) =

∫ z

−∞
xrf(x)dx =

∞∑
w=0

ηw+1

∫ z

−∞
xrgw+1(x; ξ)dx, (9)

where
∫ z
−∞ xrgw+1(x; ξ)dx is the rth incomplete moment of the Exp-G distribution.

The incomplete moment is used to estimate Bonferroni and Lorenz curves, which are
very useful in reliability, medicine, economics, demography and insurance.
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Table 1 shows the first five moments together with the standard deviation (SD or
σ), coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis
(CK) of the exponentiated half logistic odd Weibull-Topp-Leone-log logistic (EHLOW-
TL-LLoG) distribution for selected values of the parameters (α, β, δ, λ).

Table 1: Moments of the EHLOW-TL-LLoG distribution for some parameter values
.5,.5,.5,1 .5,1.5,1,1.5 .5,1.5,1,1.5 1,1.5,1,.5 1.3,1.5,1.5,.5

E(X) 0.1779 0.3043 0.3043 0.2384 0.3925
E(X2) 0.0974 0.1143 0.1143 0.0994 0.2283
E(X3) 0.0666 0.0485 0.0485 0.0539 0.1538
E(X4) 0.0505 0.0224 0.0224 0.0342 0.1133
E(X5) 0.0406 0.0111 0.0111 0.0240 0.0886

SD 0.2564 0.1474 0.1474 0.2064 0.2725
CV 1.4412 0.4844 0.4844 0.8660 0.6944
CS 1.5366 0.1456 0.1456 1.1221 0.2910
CK 4.3016 2.5268 2.5268 3.8543 2.1183

The moment generating function (mgf) of the EHLOW-TL-G family of distributions
is given by

MX(t) = E(etX) =

∞∑
q=0

ηw+1MZw+1
(t),

where MZw+1
(t) is the mgf of the Exp-G distribution.

2.4 Quantile function
The quantile function of the EHLOW-TL-G family of distributions is obtained by
inverting the cdf as follows [

1− exp(−t)
1 + exp(−t)

]δ
= u

for 0 ≤ u ≤ 1, which simplifies to

log z = −
[

[1−G
2
(x; ζ)]α

1− [1−G
2
(x; ζ)]α

]β
,

where z =
[
1−u1/δ

1+u1/δ

]
. The equation can further be simplified to

G(x; ζ) =

(
1−

[
(− log z)1/β

1 + (− log z)1/β

]1/α)1/2

,

which reduces to

G(x; ζ) = 1−

(
1−

[
(− log z)1/β

1 + (− log z)1/β

]1/α)1/2

.
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Hence, the quantile values of the EHLOW-TL-G family of distributions are obtained
by solving the equation

x(u) = G−1

1−(1− [ (− log z)1/β

1 + (− log z)1/β

]1/α)1/2
 . (10)

Some quantile values for some parameters values for the EHLOW-TL-LLoG distri-
bution are shown in Table 2 for the parameters (α, β, δ, λ).

Table 2: Quantile values for some parameters values for the EHLOW-TL-LLoG Dis-
tribution

u 1.5,1.5,1.5,1.5 1.5,1,1.5,1.5 1.5,.5,1.5,1 1.5,1.5,1,1.5 1,1.5,1,.5
0.1 0.5702 0.4981 0.1916 0.4417 0.0252
0.2 0.6683 0.6325 0.3923 0.5561 0.0596
0.3 0.7371 0.7329 0.6112 0.6384 0.0985
0.4 0.7941 0.8193 0.8531 0.7069 0.1419
0.5 0.8459 0.9004 1.1264 0.7685 0.1909
0.6 0.8963 0.9813 1.4461 0.8279 0.2478
0.7 0.9490 1.0679 1.8406 0.8890 0.3172
0.8 1.0095 1.1694 2.3740 0.9577 0.4098
0.9 1.0917 1.3110 3.2511 1.0491 0.5590

2.5 Entropy
Entropy measures variation of uncertainty of a random variable X, which follows a
probability distribution f(.). There are two common types of entropy, Rényi entropy
by Rényi (1960) and Shannon entropy by Shannon (1951). Shannon entropy is a
special case of Rényi entropy. In this paper, we derive the Rényi entropy (IR(ν)) of
the EHLOW-TL-G family of distributions as follows

IR(ν) = (1− ν)−1 log

[∫ ∞

0

fν(x)dx

]
, v ̸= 1, v > 0. (11)

Using the EHLOW-TL-G pdf, fν(x) can be written as

fν(x) =
(4αβδ)νgν(x; ζ)G

ν
(x; ζ)[1−G

2
(x; ζ)](αβ−1)ν

(1− [1−G
2
(x; ζ)]α)(β+1)ν

× exp(−νt)
(1 + exp(−t))2ν

[
1− exp(−t)
1 + exp(−t)

](δ−1)ν

.

By applying series expansions used in section 2.1, we get∫ ∞

0

fν(x)dx =

∞∑
p,q,i,m,n,w=0

(−1)p+q+i+m+n+w(p+ q + ν)i

i!

(
−(ν(δ + 1))

p

)

×
(
ν(δ − 1)

q

)
(4αβδ)ν

(
−(β(i+ ν) + ν)

m

)(
αβ(i+ ν) + αm− ν

n

)
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×
(
2n+ ν

w

)
1

(w/ν + 1)ν

∫ ∞

0

(
(w/ν + 1)gν(x; ζ)Gw/ν(x; ζ)

)ν
dx

so that the Rényi entropy of the EHLOW-TL-G family of distributions is given by

IR(ν) = (1− ν)−1 log

[∑
w=0

πwe
(1−ν)IREG)

]
, v ̸= 1, v > 0, (12)

where

πw =

∞∑
p,q,i,m,n=0

(−1)p+q+i+m+n+w(p+ q + ν)i

i!

(
−(ν(δ + 1))

p

)(
ν(δ − 1)

q

)

×(4αβδ)ν
(
−(β(i+ ν) + ν)

m

)(
αβ(i+ ν) + αm− ν

n

)(
2n+ 1

w

)
× 1

(w/ν + 1)ν
(13)

and IREG =
∫∞
0

(
(w/ν+1)gν(x; ζ)Gw/ν(x; ζ)

)ν
dx is Rényi entropy of Exp-G distribu-

tion with parameter (w/ν+1). Hence, we can directly derive the Rényi entropy of the
EHLOW-TL-G family of distributions from the Rényi entropy of Exp-G distribution.

2.6 Distribution of order statistics
The pdf of the ith order statistic can be obtained using the formula given by

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−j∑
j=0

(
n− i

j

)
F (x)j+i−1, (14)

where B(., .) is the beta function. Substituting the cdf and pdf of the EHLOW-TL-G
family of distributions into (14) and considering f(x)F (x)j+i−1, we have

f(x)F (x)j+i−1 =
4αβδg(x; ζ)G(x; ζ)[1−G

2
(x; ζ)]αβ−1

(1− [1−G
2
(x; ζ)]α)β+1

× exp(−t) (1− exp(−t))δ(j+i)−1

(1 + exp(−t))δ(j+i)+1
.

Also, by applying the series expansions from section 2.1, we get

f(x)F (x)j+i−1 =

∞∑
p,q,l,m,n,w=0

(−1)p+q+l+m+n+w(p+ q + 1)l4αβδ

l!

×
(
−(δ(j + i) + 1)

p

)(
δ(j + i)− 1

q

)(
−(β(l + 1) + 1)

m

)
×
(
αβ(l + 1) + αm− 1

n

)(
2n+ 1

w

)
g(x; ζ)Gw(x; ζ). (15)
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Therefore, the distribution of the ith order statistic from the EHLOW-TL-G family of
distributions is given by

fi:n(x) =
1

B(i, n− i+ 1)

∞∑
p,q,l,m,n,w=0

n−j∑
j=0

(−1)p+q+l+m+n+w(p+ q + 1)l4αβδ

l!

×
(
n− i

j

)(
−(δ(j + i) + 1)

p

)(
δ(j + i)− 1

q

)(
−(β(l + 1) + 1)

m

)
×
(
αβ(l + 1) + αm− 1

n

)(
2n+ 1

w

)
g(x; ζ)Gw(x; ζ)

=

∞∑
w=0

η∗w+1gw+1(x; ζ), (16)

where gw+1(x; ζ) = (w+1)g(x; ζ)Gw(x; ζ) is an Exp-G distribution with power param-
eter (w + 1) and

η∗w+1 =
1

B(i, n− i+ 1)

∞∑
p,q,l,m,n=0

n−j∑
j=0

(−1)p+q+l+m+n+w(p+ q + 1)l4αβδ

l!(w + 1)

×
(
n− i

j

)(
−(δ(j + i) + 1)

p

)(
δ(j + i)− 1

q

)(
−(β(l + 1) + 1)

m

)
×
(
αβ(l + 1) + αm− 1

n

)(
2n+ 1

w

)
. (17)

2.7 Probability weighted moments
By definition, probability weighted moments (PWMs) say ξj,i of X ∼ EHLOW-TL-G
(α, β, δ, ζ) distribution is given by

ξj,i = E(XjF (X)i) =

∫ ∞

−∞
xjf(x)F (x)idx.

Using (15) from the derivation of order statistics, we can write

f(x)F (x)i =

∞∑
p,q,l,m,n,w=0

(−1)p+q+l+m+n+w(p+ q + 1)l4αβδ

l!

×
(
−(δ(1 + i) + 1)

p

)(
δ(1 + i)− 1

q

)(
−(β(l + 1) + 1)

m

)
×
(
αβ(l + 1) + αm− 1

n

)(
2n+ 1

w

)
g(x; ζ)Gw(x; ζ),

which simplifies to

f(x)F (x)i =

∞∑
w=0

ψw+1gw+1(x; ζ),
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where

ψw+1 =

∞∑
p,q,l,m,n=0

(−1)p+q+l+m+n+w(p+ q + 1)l4αβδ

l!(w + 1)

×
(
−(δ(1 + i) + 1)

p

)(
δ(1 + i)− 1

q

)(
−(β(l + 1) + 1)

m

)
×
(
αβ(l + 1) + αm− 1

n

)(
2n+ 1

w

)
,

and gw+1(x; ξ) = (w+1)g(x; ζ)[G(x; ζ)]w is an Exp-G distribution with power param-
eter (w + 1). Therefore, the PWMs of the EHLOW-TL-G family of distributions is
given by

ξj,i =

∞∑
w=0

ψw+1

∫ ∞

−∞
xjgw+1(x; ζ)dx =

∞∑
w=0

ϕw+1E(Zjw+1),

where Zjw+1 is the jth power of an Exp-G distributed random variable with power
parameter (w + 1).

3 Estimation
In this section, we obtain the Maximum Likelihood Estimators (MLE) of vector of
parameters. If Xi ∼ EHLOW − TL − G(α, β, δ; ζ) with the parameter vector ψ =
(α, β, δ; ζ)T . The total log-likelihood ℓ = ℓ(ψ) from a random sample of size n is given
by

ℓ = n log(4αβ) +

n∑
i=1

log[g(xi; ζ)] +

n∑
i=1

log[G(xi; ζ)] + (αβ − 1)

n∑
i=1

log[1−G
2
(xi; ζ)]

−
n∑
i=1

vi − (β + 1)

n∑
i=1

log[1− (1−G
2
(xi; ζ))

α]− 2

n∑
i=1

log[1 + exp(−vi)]

+(δ − 1)

n∑
i=1

log

[
1− exp(−vi)
1 + exp(−vi)

]
,

where vi =
[

(1−G2
(xi;ζ))

α

1−(1−G2
(xi;ζ))α

]β
.

The score vector U =
(
∂ℓ
∂α ,

∂ℓ
∂β ,

∂ℓ
∂δ ,

∂ℓ
∂ζk

)
has elements given by:

∂ℓ

∂α
=

n

α
+ β

n∑
i=1

log[1−G
2
(xi; ζ)]−

n∑
i=1

(vi)
−1 β(1−G

2
(xi; ζ))

α log(1−G
2
(xi; ζ))

(1− (1−G
2
(xi; ζ))α)2

+(β + 1)

n∑
i=1

(1−G
2
(xi; ζ))

α log(1−G
2
(xi; ζ))

1− (1−G
2
(xi; ζ))α

+2β

n∑
i=1

exp(−vi) log[1−G
2
(xi; ζ)]

(
(1−G

2
(xi; ζ))(1−G

2
(xi; ζ))

αβ−1
)(

1 + exp(−vi)
)(
1− (1−G

2
(xi; ζ))α

)β+1
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+(δ − 1)

n∑
i=1

2β exp(−vi) ln[1−G
2
(xi; ζ)](1−G

2
(xi; ζ))

αβ−1(1−G(xi; ζ))
α(

1− exp(−vi)
)(
1 + exp(−vi)

)
(1− (1−G(xi; ζ))α)β+1

,

∂ℓ

∂β
=

n

β
+ α

n∑
i=1

log[1−G
2
(xi; ζ)]−

n∑
i=1

log[1− (1−G
2
(xi; ζ))

α]

−
n∑
i=1

vi log

[
(1−G

2
(xi; ζ))

α

1− (1−G
2
(xi; ζ))b

]

+2

n∑
i=1

exp(−vi) log
[

(1−G2
(xi;ζ))

α

1−(1−G2
(xi;ζ))α

]
(1−G

2
(xi; ζ))

αβ

(1 + exp(−vi))
(
1− (1−G

2
(xi; ζ))α

)β
+(δ − 1)

n∑
i=1

2vi exp(−vi) log
(

(1−G(xi;ζ))
α

1−(1−G(xi;ζ))α

)
(
1− exp(−vi)

)(
1 + exp(−vi)

) ,

∂ℓ

∂δ
=

n

δ
+

n∑
i=1

1− exp(−vi)
1 + exp(−vi)

,

∂ℓ

∂ζk
=

n∑
i=1

1

g(xi; ζ)

∂g(xi; ζ)

∂ζk
− 2

n∑
i=1

1

[G(xi; ζ)]

∂[G(xi; ζ)]

∂ζk

−(αβ − 1)

n∑
i=1

1

1−G
2
(xi; ζ)

∂
[
1−G

2
(xi; ζ)

]
∂ζk

−
n∑
i=1

(vi)
−1

×
(1−G

2
(x; ζ))α ∂[1−(1−G2

(xi;ζ))
α]

∂ζk
− (1− (1−G

2
(xi; ζ))

α)∂(1−G
2
(xi;ζ))

α

∂ζk

(1− (1−G
2
(xi; ζ))α)2

−(β + 1)

n∑
i=1

1

1− (1−G
2
(xi; ζ))α

∂
[
1− (1−G

2
(xi; ζ))

α
]

∂ζk

−2

n∑
i=1

1(
1 + exp(−vi)

) ∂(1 + exp(−vi)
)

∂ζk

+(δ − 1)

n∑
i=1

1[
1−exp(−vi)
1+exp(−vi)

] ∂
[
1−exp(−vi)
1+exp(−vi)

]
∂ζk

,

The elements of the score vector are not in closed form and can be solved using R,
MATLAB and SAS software.

Furthermore, we use the observed Fisher information matrix to obtain confidence
intervals for the model parameters ψ = (α, β, δ, ζ). The Fisher information matrix is
given by

J(ψ) =

Jαα(ψ) Jαβ(ψ) Jαδ(ψ) Jαζ(ψ)
Jβα(ψ) Jββ(ψ) Jβδ(ψ) Jβζ(ψ)
Jδα(ψ) Jδβ(ψ) Jδδ(ψ) Jδζ(ψ)
Jζα(ψ) Jζβ(ψ) Jζδ(ψ) Jζζ(ψ)

 , (18)
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where Ji,j = −∂2ℓ(ψ)
∂i∂j , for i, j = α, β, δ, ζ, where ζ is a p component vector, Jζζ(ψ)

is a p × p matrix, Jαζ(ψ), Jβζ(ψ) and Jδζ(ψ) has p × 1 components, respectively.
Under the usual regularity conditions ψ̂ is asymptotically normal distributed, that is
ψ̂ ∼ N(0, I−1(ψ)) as n −→ ∞, where I(ψ) is the expected information matrix. The
asymptotic behaviour remains valid if I(ψ) is replaced by J(ψ̂), the information matrix
evaluated at ψ̂.

4 Some special cases
In this section, we present five special cases of the EHLOW-TL-G family of distribu-
tions. We considered cases when the baseline distribution is power function, Burr XII,
uniform, Kumaraswamy and Weibull distributions.

4.1 Exponentiated half-logistic odd Weibull-Topp-Leone-power
distribution

Consider the power distribution as the baseline distribution with pdf and cdf given
by g(x;λ, c) = cλcxc−1 and G(x;λ, c) = (λx)c, for 0 < x < 1/λ and c > 0, respec-
tively. The cdf and pdf of the exponentiated half logistic odd Weibull-Topp-Leone-
power (EHLOW-TL-P) distribution are given by

F
EHLOW−TL−P

(x;α, β, δ, λ, c) =

[
1− exp(−p)
1 + exp(−p)

]δ
f
EHLOW−TL−P

(x;α, β, δ, λ, c) =
4αβδcλcxc−1(1− (λx)c)[1− (1− (λx)c)2]αβ−1

(1− [1− (1− (λx)c)2]α)β+1

× exp(−p)
(
1 + exp(−p)

)−2

[
1− exp(−p)
1 + exp

(
− p
)]δ−1

,

respectively, where p =
[

[1−(1−(λx)c)2]α

1−[1−(1−(λx)c)2]α

]β
, α, β, δ, c > 0 and 0 < x < 1/λ.

Figure 1: Plots of the pdf and hrf for the EHLOW-TL-P distribution
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Figure 1 shows the pdfs and hazard functions for the EHLOW-TL-P distribution.
The pdfs exhibits various shapes that include reverse-J, left and right-skewed. The
distribution also has platykurtic pdfs. The distribution has flexible hazard rate function
that takes both non-monotonic and monotonic shapes.

4.2 Exponentiated half-logistic odd Weibull-Topp-Leone-Burr
XII distribution

Consider the Burr XII distribution as the baseline distribution with pdf and cdf given
by g(x;λ, γ) = λγxλ−1(1 + xλ)−γ−1 and G(x;λ, γ) = 1− (1 + xλ)−γ , respectively, for
c, k > 0. The cdf and pdf of the exponentiated half logistic odd Weibull-Topp-Leone-
Burr XII (EHLOW-TL-BXII) distribution are given by

F
EHLOW−TL−BXII

(x;α, β, δ, λ, γ) =

[
1− exp(−t)
1 + exp(−t)

]δ
f
EHLOW−TL−BXII

(x;α, β, δ, λ, γ) =
4αβδλγxλ−1(1 + xλ)−2γ−1[1− (1 + xλ)−2γ ]αβ−1

(1− [1− (1 + xλ)−2γ ]α)β+1

× exp(−t)
(
1 + exp(−t)

)−2
[
1− exp(−t)
1 + exp(−t)

]δ−1

,

respectively, where t =

[
[1−(1+xλ)−2γ ]α

1−[1−(1+xλ)−2γ ]α

]β
, α, β, δ, λ, γ > 0. By letting λ = 1

and γ = 1, we obtain the exponentiated half logistic odd Weibull-Topp-Leone-Lomax
(EHLOW-TL-Lx) and the exponentiated half logistic odd Weibull-Topp-Leone-log lo-
gistic (EHLOW-TL-LLoG) distributions, respectively from the EHLOW-TL-BXII dis-
tribution.

Figure 2: Plots of the pdf and hrf for the EHLOW-TL-BXII distribution

Figure 2 shows the pdfs and hazard functions for the EHLOW-TL-BXII distribu-
tion. The distribution has a very flexible hazard rate function that exhibit bathtub,
upside bathtub, decreasing and increasing shapes. Also, the model is versatile in data
fitting since the pdfs exhibit different levels of kurtosis and skewness.
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4.3 Exponentiated half-logistic odd Weibull-Topp-Leone- uni-
form distribution

If we take the uniform distribution as the uniform distribution with pdf and cdf given
by g(x;λ) = 1/λ and G(x;λ) = x/λ, respectively, for 0 < x < λ, we obtain the expo-
nentiated half logistic odd Weibull-Topp-Leone-uniform (EHLOW-TL-U) distribution
with cdf and pdf given by

F
EHLOW−TL−U

(x;α, β, δ, λ) =

[
1− exp(−r)
1 + exp(−r)

]δ
f
EHLOW−TL−U

(x;α, β, δ, λ) =
4αβδ(1− x/λ)[1− (1− x/λ)2]αβ−1

λ(1− [1− (1− x/λ)2]α)β+1

× exp(−r)
(
1 + exp(−r)

)−2
[
1− exp(−r)
1 + exp(−r)

]δ−1

respectively, where r =
[

[1−(1−x/λ)2]α
1−[1−(1−x/λ)2]α

]β
, α, β, δ > 0 and 0 < x < λ.

Figure 3: Plots of the pdf and hrf for the EHLOW-TL-U distribution

Figure 3 shows the pdfs and hazard functions for the EHLOW-TL-U distribution.
The pdfs exhibit various shapes that include reverse-J, left and right skewed. The
distribution also addresses variation in kurtosis. The hazard rate function (hrf) also
exhibit bathtub, increasing, J and reverse-J shapes.

4.4 Exponentiated half-logistic odd Weibull-Topp-Leone- Ku-
maraswamy distribution

By considering the Kumaraswamy distribution as the baseline distribution with pdf
and cdf given by g(x; a, b) = abxa−1(1 − xa)b−1 and G(x; a, b) = 1 − (1 − xa)b, for
a, b > 0, respectively, we get the exponentiated Half logistic odd Weibull-Topp-Leone-
Kumaraswamy (EHLOW-TL-Kw) distribution with cdf and pdf given by

F
EHLOW−TL−Kw

(x;α, β, δ, a, b) =

[
1− exp(−w)
1 + exp(−w)

]δ
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f
EHLOW−TL−Kw

(x;α, β, δ, a, b) =
4αβδabxa−1(1− xa)2b−1[1− (1− xa)2b]αβ−1

(1− [1− (1− xa)2b]α)β+1

× exp(−w)
(
1 + exp(−w)

)−2
[
1− exp(−w)
1 + exp(−w)

]δ−1

,

respectively, where w =

[
[1−(1−xa)2b]α

1−[1−(1−xa)2b]α

]β
, α, β, δ, a, b > 0.

Figure 4: Plots of the pdf and hrf for the EHLOW-TL-Kw distribution

Figure 4 shows the pdfs and hazard functions for the EHLOW-TL-Kw distribution.
The distribution is more versatile in data fitting because the pdf exhibit various shapes
that include almost symmetric, reverse-J, right-skewed and U shape. The distribution
can also be applied to data sets that has monotonic or non-monotonic hazard rate
functions.

4.5 Exponentiated half-logistic odd Weibull-Topp-Leone-
Weibull distribution

Taking the Weibull distribution as the baseline distribution with pdf and cdf given
by g(x; θ, γ) = θγxγ−1e−θx

γ and G(x; θ, γ) = 1 − e−θx
γ , for θ, γ > 0, respectively, we

get the exponentiated half logistic odd Weibull-Topp-Leone-Weibull (EHLOW-TL-W)
distribution are given by

F
EHLOW−TL−W

(x;α, β, δ, θ, γ) =

[
1− exp(−q)
1 + exp(−q)

]δ
f
EHLOW−TL−W

(x;α, β, δ, θ, γ) =
4αβδθγxγ−1e−2θxγ

[1− e−2θxγ

]αβ−1

(1− [1− e−2θxγ ]α)β+1

× exp(−q)
(
1 + exp(−q)

)−2
[
1− exp(−q)
1 + exp(−q)

]δ−1

,

respectively, where q =
[

[1−e−2θxγ
]α

1−[1−e−2θxγ
]α

]β
, α, β, δ, θ, γ > 0.
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Figure 5: Plots of the pdf and hrf for the EHLOW-TL-W distribution

Figure 5 shows the pdfs and hazard functions for the EHLOW-TL-W distribution.
The pdfs take various shapes that include reverse-J, left or right-skewed and almost
symmetric. The distribution also addresses variation in kurtosis. The hrf also exhibit
bathtub, increasing, decreasing and J shapes.

5 Simulation Study
A simulation study is conducted to evaluate consistency of the maximum likelihood
estimates. We used R statistical software through the package (stats4), command
MLE, for the EHLOW-TL-LLoG distribution. We simulated for sample sizes n=25,
50, 100, 200, 400, 800 and 1000 for N=1000 from the EHLOW-TL-LLoG distribution
for the following sets of parameters values: I : α = 1, β = 1, δ = 1, λ = 1, II : α =
1.2, β = 1.2, δ = 0.5, λ = 1 and III : α = 1.2, β = 1.2, δ = 1.0, λ = 1. The simulation
results are presented in Table 3. We assessed performance of the MLE using the mean,
root mean square error (RMSE) and average bias. We expect the values of the RMSE
and bias to decay toward zero for increased sample sizes if the MLE are consistent. As
the sample size increases, the mean approximates the true parameter values. Also, as
the sample size increases, the RMSEs and average bias decays toward zero for all the
parameters.

6 Inference
In this section, we present real data examples to demonstrate the usefulness of the
EHLOW-TL-LLoG distribution. Various goodness-of-fit statistics were used to assess
model performance and these include -2loglikelihood (-2 log L), Akaike Information
Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Informa-
tion Criterion (BIC), Cramer-von Mises (W ∗) and Andersen-Darling (A∗) (see Chen
and Balakrishnan (1995) for details), sum of squares (SS), Kolmogorov-Smirnov (K-S)
statistic and its P-value. The model with the smaller values of these goodness-of-fit
statistics and bigger p-values of K-S statistics is regarded as the best model.
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Table 3: Monte Carlo simulation results for EHLOW-TL-LLoG distribution: Mean,
RMSE and average bias when λ = 1.

α = 1, β = 1, δ = 1 α = 1.2, β = 1.2, δ = 0.5 α = 1.2, β = 1.2, δ = 1.0
n Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias
25 1.097 0.736 0.097 1.090 0.704 -0.109 1.189 0.736 -0.010
50 1.151 0.719 0.151 1.219 0.660 0.019 1.197 0.685 -0.002
100 1.126 0.670 0.126 1.228 0.596 0.028 1.206 0.663 0.006

α 200 1.179 0.619 0.179 1.310 0.525 0.110 1.269 0.589 0.069
400 1.159 0.571 0.159 1.367 0.479 0.167 1.248 0.549 0.048
800 1.115 0.485 0.115 1.397 0.441 0.197 1.248 0.489 0.048
1000 1.106 0.457 0.106 1.394 0.433 0.194 1.243 0.468 0.043
25 1.847 2.936 0.847 1.748 1.367 0.548 2.133 3.165 0.933
50 1.629 1.287 0.629 1.800 1.255 0.600 1.702 1.250 0.502
100 1.484 1.064 0.484 1.692 1.102 0.492 1.628 1.150 0.428

β 200 1.502 1.027 0.502 1.720 1.056 0.520 1.655 1.037 0.455
400 1.461 0.965 0.461 1.759 1.046 0.559 1.614 0.983 0.414
800 1.333 0.798 0.333 1.790 1.105 0.590 1.555 0.879 0.355
1000 1.301 0.746 0.301 1.776 1.058 0.576 1.538 0.871 0.338
25 3.084 6.077 2.084 1.603 2.449 1.103 4.589 11.565 3.589
50 2.039 2.565 1.039 1.074 1.400 0.574 2.286 2.962 1.286
100 1.766 2.114 0.766 0.812 0.856 0.312 1.953 2.475 0.953

δ 200 1.392 1.519 0.392 0.606 0.430 0.106 1.524 1.758 0.524
400 1.221 0.936 0.221 0.526 0.214 0.026 1.352 1.183 0.352
800 1.113 0.558 0.113 0.489 0.135 -0.010 1.195 0.725 0.195
1000 1.086 0.455 0.086 0.492 0.129 -0.007 1.160 0.590 0.160
25 1.171 1.128 0.171 1.145 0.948 0.145 1.130 1.025 0.130
50 1.032 0.790 0.032 0.983 0.718 -0.016 1.122 0.882 0.122
100 0.993 0.613 -0.006 0.997 0.595 -0.002 1.082 0.672 0.082

c 200 0.930 0.492 -0.069 0.940 0.498 -0.059 0.998 0.552 -0.001
400 0.894 0.413 -0.105 0.873 0.412 -0.126 0.964 0.473 -0.035
800 0.919 0.350 -0.080 0.845 0.385 -0.154 0.955 0.417 -0.044
1000 0.919 0.328 -0.080 0.833 0.372 -0.166 0.954 0.398 -0.045

Model parameters were estimated using the MLE technique using the nlm package
in R software. We present parameters estimates (standard errors in parentheses) and
goodness-of-fit statistics in Tables 4 and 5. We also provide plots of fitted densities
and probability plots as suggested by Chambers et al. (1983) to demonstrate how the
EHLOW-TL-LLoG model fit the real data sets compared to the other several non-
nested models.

The EHLOW-TL-LLoG distribution was compared to several non-nested models
and these are the Kumaraswamy odd Lindley-Log logistic (KOL-LLoG) by Chipepa et
al. (2019b), Kumaraswamy-Weibull (KwW) by Cordeiro et al. (2010), beta-Weibull
(BW) by Cordeiro et al. (2013), beta odd Lindley-exponential (BOL-E) and beta
odd Lindley-uniform by Chipepa et al. (2019a), the exponential Lindley odd log-
logistic Weibull (ELOLLW) by Korkmaz et al. (2018), Topp-Leone-Weibull-Lomax
(TL-WLx) by Jamal et al. (2019), and Topp-Leone-Marshall-Olkin-Weibull (TLMO-
W) by Chipepa et al. (2020). The pdfs of the non-nested models are as follows:

fKOL−LLoG(x; a, b, λ, c) = ab

[
λ2

(1 + λ)

cxc−1

(1 + xc)−1
exp(−λz)

]
×
[
1− λ+ ((1 + xc)−1)

(1 + λ)((1 + xc)−1)
exp(−λz)

]a−1
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×
(
1−

[
1− λ+ ((1 + xc)−1)

(1 + λ)((1 + xc)−1)
exp(−λz)

]a)b−1

,

where z = (1−(1+xc)−1)
((1+xc)−1) , a, b, λ, c > 0,

f
BW

(x; a, b, α, β) =
βαβ

B(a, b)
xβ−1e−b(αx)

β

(1− e−(αx)β )a−1,

for a, b, α, β > 0,

f
KwW

(x; a, b, α, β) = abαβxβ−1e−(αx)β (1− e−(αx)β )a−1(1− (1− e−(αx)β )a)b−1,

for a, b, α, β > 0,

f
ELOLLW

(x;α, β, γ, θ, λ) =
αθ2γλγxγ−1e−(λx)γ (e−(λx))αθ−1(1− e−(λx)γ )α−1

(θ + β)((1− e−(λx)γ )α + e−α(λx)γ )θ−1

×
(
1− β log

[
e−(λx)γ

(1− e−(λx)γ )α + e−α(λx)γ

])
,

for α, β, γ, θ, λ > 0,
f
TL−WLx

(x; a, b, α, θ) = 2θαab(1 + bx)aα−1(1− (1 + bx)−a)α−1

× exp

(
−2

(
1− (1 + bx)−a

(1 + bx)−a

))
×
[
1− exp

(
−2

(
1− (1 + bx)−a

(1 + bx)−a

))]θ−1

,

for a, b, α, θ > 0,

fBOL−U (x; a, b, λ, θ) =
1

B(a, b)

[
1− λ+ (1− x/θ)

(1 + λ)(1− x/θ)
exp

{
−λ x

(θ − x)

}]a−1

×
[
λ+ (1− x/θ)

(1 + λ)(1− x/θ)
exp

{
−λ x

(θ − x)

}]b−1

× λ2

(1 + λ)

θ2

(θ − x)3
exp

{
−λ x

(θ − x)

}
,

for a, b, λ, θ > 0,

fBOL−E(x; a, b, λ, θ) =
1

B(a, b)

[
1− λ+ e−θx

(1 + λ)e−θx
exp

{
−λ (1− e−θx)

e−θx

}]a−1

×
[
λ+ e−θx

(1 + λ)e−θx
exp

{
−λ (1− e−θx)

e−θx

}]b−1

× λ2

(1 + λ)

(θe−θx)

e−3θx
exp

{
−λ1− e−θx

e−θx

}
,

for a, b, λ, θ > 0, and

fTLMO−W (x; b, δ, λ, γ) =
2bδ2λγxγ−1e−2λxγ

(1− δ̄e−λxγ )3

[
1− δ2e−2λxγ

(1− δ̄e−λxγ )2

]b−1

,

for b, δ, λ, ω > 0. For the ELOLLOW distribution we considered the case when α = 1.
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6.1 Chemotherapy data
We first consider the data set reported by Bekker and Mostert (1998) which represent
the survival times (in years) of patients given chemotherapy treatment alone. The 46
observations are as follows: 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282,
0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696,
0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343,
2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033.

Table 4: Parameter estimates and goodness-of-fit statistics for various models fitted
for chemotherapy data set

Estimates Statistics
Model α β δ λ −2 log L AIC AICC BIC W ∗ A∗ KS P − value

EHLOW-TL-LLoG 9.2518 1.2072 0.1640 0.9295 111.4 119.4 120.4 126.6 0.0401 0.2968 0.0810 0.9063
(4.7098) (0.6947) (0.1385) (0.1767)

a b λ c
KOL-LLoG 2.4478 0.1302 7.4117 0.8769 114.9 122.9 123.9 130.2 0.0541 0.3830 0.0969 0.7562

(0.8768) (0.1585) (7.9891) (0.2028)
b δ λ γ

TLMO-W 1.5663 0.8611 0.4921 0.8424 116.1 124.1 125.1 131.3 0.0682 0.4650 0.0991 0.7320
(1.9293) (1.0623) (0.7341) (0.6036)

a b λ θ
BOL-U 0.9574 3.3672 3.8385 17.1583 116.0 124.0 125.0 131.1 0.0936 0.6198 0.1196 0.5027

(0.3187) (7.7617) (6.8110) (30.4900)
BOL-E 1.0442 0.3782 22.3842 0.0829 116.0 124.0 125.0 131.2 0.0860 0.5723 0.1230 0.4677

(0.2623) (0.4825) (27.4203) (0.0804)
a b λ k

BW 2.0869 11.1746 0.0683 0.6816 116.0 124.0 125.0 131.2 0.0662 0.4538 0.0982 0.7411
(3.6003) (32.5966) (0.2788) (0.6711)

a b α β
KwW 10.5120 157.1692 0.5989 0.1637 116.0 124.0 125.0 131.3 0.0688 0.4686 0.1021 0.6979

(4.9909) (0.0679) (1.3694) (0.0464)
β λ θ γ

ELOLLW 0.3336 0.3242 2.6099 1.0468 116.2 124.2 125.2 131.5 0.0819 0.5471 0.1098 0.6104
(1.8652) (0.1816) (0.2177) (0.1389)

a b α θ
TL-WLx 0.1876 9.1119 8.7808 0.1567 113.3 121.3 122.3 128.6 0.0836 0.5588 0.1134 0.5700

(0.0945) (17.7419) (9.1243) (0.2051)

Figure 6: Fitted densities and probability plots for chemotherapy data

The estimated variance-covariance matrix is given by22.1818 1.2737 −0.5697 0.3671
1.2737 0.4826 −0.0726 −0.0673
−0.5697 −0.0726 0.0191 −0.0014
0.3671 −0.0673 −0.0014 0.0312


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and the 95% confidence intervals for the model parameters are given by

α ∈ [9.2518± 9.2311], β ∈ [1.2072± 1.3616],

δ ∈ [0.1640± 0.2715], c ∈ [0.9295± 0.3464].

Based on the results shown in Table 4, we observe that the EHLOW-TL-LLoG
model has the smallest values of all the goodness-of-fit statistics and bigger value for
the P-value of the K-S statistic. We therefore conclude that the EHLOW-TL-LLoG
distribution fit the survival times of patients on chemotherapy alone better than the
several non-nested models considered in this paper. The fitted pdf to histogram also
show that the EHLOW-TL-LLoG model fit the data set better than the selected non-
nested models.

6.2 Failure times data
We considered as the second example, the data set reported by Murthy et al. (2004)
which represent failure times (per 1000h) of 50 components. The observations are as
follows: 0.036, 0.148, 0.590, 3.076, 6.816, 0.058, 0.183, 0.618, 3.147, 7.896, 0.061, 0.192,
0.645, 3.625, 7.904, 0.074, 0.254, 0.961, 3.704, 8.022, 0.078, 0.262, 1.228, 3.931, 9.337,
0.086, 0.379, 1.600, 4.073, 10.940, 0.102, 0.381, 2.006, 4.393, 11.020, 0.103, 0.538, 2.054,
4.534, 13.880, 0.114, 0.570, 2.804, 4.893, 14.73, 0.116, 0.574, 3.058, 6.274, 15.08.

Table 5: Parameter estimates and goodness-of-fit statistics for various models fitted
for failure times data set

Estimates Statistics
Model α β δ λ −2 log L AIC AICC BIC W ∗ A∗ KS P − value

EHLOW-TL-LLoG 3.3865 0.2229 0.9063 1.3145 200.1 208.1 209.0 215.7 0.1110 0.7179 0.1062 0.5889
(1.5417) (0.1836) (0.3016) (0.9167)

a b λ c
KOL-LLoG 7.8627 0.1240 7.8882 0.4448 201.9 209.9 210.8 217.6 0.1490 0.9187 0.1336 0.3063

(50.8505) (0.2166) (17.1901) (0.2814)
b δ λ γ

TLMO-W 0.6761 1.3029 0.1886 0.8232 204.7 212.7 213.5 220.3 0.1469 0.9372 0.1403 0.2538
(1.2480) (1.4028) (0.5680) (1.0324)

a b λ θ
BOL-U 0.4803 1.9720 3.3677 41.6212 204.0 212.0 212.8 219.6 0.1390 0.9233 0.1506 0.1870

(0.1014) (7.0742) (10.9295) (34.2710)
BOL-E 0.4939 1.2329 3.9341 0.0373 204.2 212.2 213.1 219.9 0.1409 0.9254 0.1491 0.1954

(0.1032) (3.8386) (13.2498) (0.0452)
α β γ θ
a b λ k

BW 1.4514 9.9529 0.0111 0.5250 204.7 212.7 213.6 220.3 0.1549 0.9657 0.1188 0.4460
(3.4572) (0.0651) (0.0052) (0.7545)

a b α β
KwW 3.6048 110.40 0.0017 0.2114 204.8 212.8 213.7 220.5 0.1555 0.9699 0.1208 0.4253

(0.0010) (2.1385 ×10−5) (0.0010) (0.0211)
β λ θ γ

ELOLLW 1.1051 0.0423 5.0895 0.6521 204.7 212.7 213.6 220.3 0.1512 0.9494 0.1285 0.3512
(3.0861) (0.0295) (0.6697) (0.0861)

a b α θ
TL-WLx 0.3141 0.5138 4.8158 0.1075 202.5 210.5 211.4 218.1 0.1247 0.8344 0.1435 0.2317

(0.1369) (0.5271) (4.1670) (0.0939)

The estimated variance-covariance matrix is given by 2.3769 0.1584 −0.4160 −0.7945
0.1584 0.0337 −0.0315 −0.1671
−0.4160 −0.0315 0.0909 0.1540
−0.7945 −0.1671 0.1540 0.8403


and the 95% confidence intervals for the model parameters are given by

α ∈ [3.3865± 3.0218], β ∈ [0.2229± 0.3599],
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Figure 7: Fitted densities and probability plots for failure times data

δ ∈ [0.9063± 0.5911], c ∈ [1.3145± 1.7967].

We also deduce from the second example that the EHLOW-TL-LLoG distribution
performs better than the several selected non-nested models considered in this paper.
The EHLOW-TL-LLoG model has smaller values for the goodness-of-fit statistics and
bigger value for the p-value of the K-S statistic as shown in Table 5.

7 Conclusions
We developed a new family of distributions referred to as the exponentiated half lo-
gistic odd Weibull-Topp-Leone-G (EHLOW-TL-G) family of distributions. Statistical
properties of the proposed family of distributions are also presented. Maximum like-
lihood estimates for the model parameters were also derived followed by a simulation
study to evaluate consistency of the maximum likelihood estimates. We applied the
EHLOW-TL-LLoG distribution to two real data examples. From the applications pre-
sented, we conclude that the EHLOW-TL-LLoG model performs better than several
non-nested models considered in this paper.
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