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Keywords  Abstract 

Central Iran is one of the active mining zones of Iran and has great 
mining potential. Large iron mines such as Choghart, Chadormalu, 
Sechahoon, Chahgaz, Lake Siah, Mishdavan, etc. are located in this 
zone. Other metals also exist in this zone Like lead and zinc in 
Koushk, Chahmir, and Taj-Kooh mines. Also, non-metallic deposits 
such as Fahraj limestone mines and building stone mines such as 
Bishedar marble, Taft travertine, Shirkooh granite, etc. are being 
extracted in this zone. Considering mineral resources and current 
explorations, the mines continue to develop and one of the 

important topics in the exploration and exploitation phase is the study of geomechanical conditions in the 
zone under study.  
The relationship between the physical and mechanical properties of rocks makes it possible to predict the 
strength of the intact rock which can be used in preliminary designing of the mine at less cost and less time 
and just with some simple tests on exploratory boreholes and surface samples. It can also be used in mines 
under extraction to gain more comprehensive knowledge of the mechanical properties of mine rocks. In this 
study, mechanical properties such as uniaxial compressive strength, point load, indirect tensile strength 
(Brazilian) as well as physical properties of rock such as density, porosity, compressive wave velocity (P-
wave), and electrical resistivity were measured on selected samples taken from Choghart, Sechahoon, Lakeh 
Siah, Koushk, Bishehdar marble, Taft travertine, Ravar sandstone and the cores of 5 geotechnical boreholes 
from the Anomaly VI of Central Iran Iron Ore and 4 geotechnical boreholes of Chahgaz iron ore mine. The 
purpose of these measurements is to investigate the relationship between mechanical and physical 
properties of the samples, especially electrical resistivity. In the first step, 300 surface and depth samples 
were collected from the mines mentioned above. After preparing the cores, effective porosity and density 
were recorded according to the standards (weighing the saturated and dry sample method). Also, the 
electrical resistivity was calculated by measuring the voltage and electrical current in the samples. The results 
demonstrated that there is a high correlation between P-wave velocity and electrical resistivity in all the 
samples. Furthermore, both parameters of P-wave velocity and electrical resistivity are dependent on 
porosity, and electrical resistivity like P-wave velocity has a good relationship with the mechanical properties 
of sedimentary rocks and volcano-sediments. Hence, the special electrical resistivity can be used as a non-
destructive test to estimate the mechanical properties of rocks. Additionally, the presence of metal ores in 
the samples in low percentages does not cause errors in estimating physical and mechanical parameters as 
long as density is less than 2.8 gr/cm3. For samples with high metal content, induced polarization 
measurements can reduce the uncertainty of the electrical resistivity.  
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1. INTRODUCTION 

Estimating the mechanical properties of rocks 
is important in any engineering project. The most 

common mechanical parameters are uniaxial 
compressive strength (UCS) and tensile strength 
of rock (σt), and in cases where the dimensions of 
the sample do not allow uniaxial strength test, the 
point load index is checked. Numerous studies 
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have been performed to establish experimental 
relationships between UCS, tensile strength, and 
point load index with ultrasonic pulse velocity 
(UPV), density, and porosity. (D'Andrea et al. 
1965, Gaviglio 1989, Cargill and Shakoor 1990, 
Chau and Wong 1996, Brovtsyn and Chershneva 
2000, Kahraman 2001a, 2001b, Sharma and Singh 
2007, Kahraman and Yeken 2008, Sarno 2010, 
Kurtulus and Et al. 2010, Yağız 2011, Rajabzadeh 
et al. 2012, Sheraz et al. 2014, Kurtulus et al. 2016, 
Jamshidi et al. 2016, Jamshidi et al. 2018, Arshad 
Nejad 2018, Arshad Nejad 2020, etc.). However, 
limited studies have been performed on the 
relationship between electrical resistivity as one 
of the physical parameters of rock and the 
mechanical properties of rock. Most researchers 
have used P-wave velocity to estimate the 
mechanical properties owing to the dependence of 
ultrasonic pulse velocity (UPV) on the mechanical 
properties of the rock. Whereas, the electrical 
resistivity can estimate mechanical parameters 
too because it is dependent on the characteristics 
of the porous medium such as porosity, texture, 
amount of clay (alteration), and the number of 
metal ores. (Llera et al. 1990, Matsui et al. 2000, 
Roberts et al. 2000, Roberts et al. 2001a, Awang 
and Gye-Chun 2016, Kahraman and Yeken 2010, 
Iebrahim Sertçelik et al. 2018). 

In this research, the relationship between the 
mechanical and physical properties (especially 
electrical resistivity) of sedimentary rock samples 
and volcano-sediments of Central Iran are 
investigated. 

2. SAMPLING AND TESTING METHOD 

In these experiments, the following samples 
were investigated: 32 igneous and metamorphic 
samples taken from Sehchahoon iron ore mine, 9 
samples from Bishedar marble, 22 samples from 
metamorphic and igneous rocks of Choghart iron 
ore mine, 24 samples from sedimentary and 
igneous rocks (ore and including rock) of Lakeh 
Siah iron ore mine, 2 samples from Ravar 
sandstones selected from exploratory boreholes 
of 300 and 400 meters depth, 6 travertine samples 
from Taft building stone mines (Aliabad), one 
massive sulfide sample from Kushk mine, 57 
metamorphic and igneous samples from cores of 4 
geotechnical boreholes behind the walls of 
Chahgaz iron ore mine and 145 acidic tuff samples 
from cores of 5 geotechnical boreholes existing in 
Anomaly VI of central Iran iron ore (Figure 1). 

All samples were taken from the mine walls 
and cores extracted in the laboratory with a 
diameter of 54±2 mm according to ASTM 1984, 

ASTM 2001, ISRM 2007 standards except for 
samples taken from Chahgaz, Ravar, and Anomaly 
VI (Figure 2). 

 
Figure 1. Central Iran and sampling zones (Torab 
and Lehmann 2007). These areas include the mines 
of Choghart, Koushk, Anomaly VI, Sehchahoon, Lake 
Siah, Chahgaz, and Bishehdar which are bounded 
between Ravar in the east and Taft in the west. 
These areas are located on the Kerman-Kashmar 

igneous rock arch . 
 

After sampling and preparing the cores, the 
two ends of the sample were cut and parallelized 
with an accuracy of 0.25 degrees (15´). Then, the 
two ends of the sample were abraded with an 
accuracy of 0.02 mm by using silica powder. At the 
next stage, the dimensions of the samples were 
measured according to ISRM 2007 standard and 
were weighed after placing the samples in an oven 
at 105 ° C for 24 hours. Afterward, the P-wave 
velocity was measured using a UPV device with 55 
kHz frequency transducers according to ISRM 
1981 and ASTM 1978 standards (Figure 3a). After 
measuring the P-wave velocity in dry samples, 
they were placed in distilled water at 25° C 
temperature ambient air for at least 24 hours 
according to the ISRM 2007 standard. Effective 
porosity was calculated by measuring the 
difference between saturated and dry weight. P-
wave velocity was also measured for the saturated 
samples. The electrical resistivity was measured 
after immersing the samples in a solution of water 
and salt with a conductivity of 1 Siemens per 
meter (S/m) for 14 days (Figure 3b). The medical 
conductive electro gels (AgCl) were used to 
connect the electrode and rock in a better way and 
a quick clamp with a constant force of 1000 N was 
used for the rock pressure to be constant. 
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Table 1. Lithology of samples and number of tests performed 

Sampling location Rock type Lithology No ne γ Vp ρ CGS UCS σt PLI 

Anomaly VI 
Volcano-
sediment 

Acidic Tuff 145 145 145 145 145 25 28 190 77 

Choghart 
Metamorphic Metasomatitis 21 

22 22 22 22 19 7 16 11 
Igneous Magnetite ore 1 

Sehchahoon 
Metamorphic Metasomatitis 25 

32 32 32 32 30 1 32 21 
Igneous Magnetite ore 7 

Lekeh Siah 
Sedimentary Dolomite 12 

24 24 24 24 24 8 18 30 
Igneous Hematite ore 12 

Chahgaz 
Metamorphic Metasomatitis 53 

57 57 57 53 38 21 - - 
Igneous Magnetite ore 4 

Bishehedar Marble Sedimentary Marble 9 9 9 9 9 9 1 9 7 

Taft Travertine Sedimentary Travertine 6 6 6 6 6 6 - 4 4 

Koushk 
Volcano-
sediment 

Massive Sulfide 1 1 1 1 1 1 - 2 - 

Ravar  Sedimentary Sandstone 2 2 2 2 2 2 1 2 2 

ne: Effective porosity, γ: Density, VP: P-wave Velocity, ρ: Electrical Resistivity, CGS: Magnetic Susceptibility, UCS: Uniaxial 
Compressive Strength, 
 σt: Indirect tensile strength (Brazilian Test), PLI: Point Load Index. 

After measuring the physical properties, 
mechanical tests such as UCS according to ASTM 
1984 standard with a loading intensity of 0.5 kN/s, 
indirect tensile test (Brazilian) with ASTM D3967, 
ISRM, and point load index were performed with 
ISRM standard. 

 
Figure 2. Samples prepared for physical and 

mechanical studies 

 
Figure 3. Equipment for measuring the P-wave 

(a) and electrical resistivity (b) 

3. RESULTS 

3.1. Statistical Analysis 
Figure 4 shows the samples’ range of physical 

properties including P-wave velocity, electrical 
resistivity, porosity, and density 

 

Figure 4. The range of physical properties of the 
samples studied  

The average porosity of the samples is about 
1.8% and the standard deviation is 1.7% with a 
lognormal distribution. The maximum and 
minimum porosity measured is 0.04% and 9.71% 
respectively (Figure 4. c). The average density of 
the samples is 2.71 ton/m3 with a standard 
deviation of 0.47 and a normal distribution. The 
lowest density is related to an altered tuff sample 
of Anomaly VI and the maximum density to a 
hematite sample from Lake Siah (Figure 4.d). Also, 
the average P-wave velocity in dry samples is 
about 4440 m/s, the lowest of which was for a 
porous tuff sample in Anomaly VI and the highest 
was for a hard dolomite sample recorded in the 
Lake Siah (Figure 4. a). In terms of electrical 
resistivity, the average was about 2900 
ohmmeters. The highest electrical resistivity was 
for the same high-velocity sample measured in the 
Lakeh Siah mine and the lowest was for a sample 
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of sulfide rock from Koushk which contained 65% 
of sulfide metal ores as well as a sample of 
magnetite iron ore from Sechahoon (Figure 4. b). 
It should be noted that before electrical resistivity 
measurements, samples were saturated with pore 
water with electrical conductivity of 1 S/m. The 
electrical resistivity, as expected, shows a 
lognormal distribution (Figure 5.a). The 
histogram shows the density of all samples which 
follows a bimodal distribution. An average value of 
4.5 g/cm3 is related to samples containing metal 
minerals (Figure 5.d). P-wave velocity also follows 
a bimodal distribution (Figure 5.b). The statistical 
population with a smaller P-wave velocity is 
related to the fractured and altered samples of 
Anomaly VI and Sechahoon (Figure 5.b and Figure 
6). 

 
 

Figure 5. Statistical distribution of physical 
properties of the studied samples 

 

 
 

Figure 6. Statistical distribution of P-wave velocity 
of Anomaly VI, Sechahoon and other mines 

 

3.2. Relationship Between P-Wave Velocity 
And Density 

Figure 7.a shows the relationship between P-
wave velocity and density. Comparing previous 
studies (sedimentary rocks) with this study shows 
that this relationship is not only established for 
sedimentary type, but also for volcano-sediment 
rocks provided that the density is less than 2.8 

g/cm3. The important point is that the dispersion 
of these results is the same in the previous and the 
current study. Measurement of surface electrical 
conductivity, which represents clay alteration in 
the sample (not reported here), showed that for 
densities less than 2.8 g/cm3, the alteration 
decreases to a lower density with a linear function. 
This indicates that alteration has increased 
porosity and consequently decreased density 
(Figure 7.c). Another point is that many of the 
samples used in this study have metal minerals, 
especially hematite and magnetite (Figure 8). 
Figure 7.b shows the same relationship between 
P-wave velocity and density. In this figure, the 
magnetic susceptibility of the samples is shown 
with a color scale. It should be noted that magnetic 
susceptibility can be directly related to magnetite 
content of sample. According to Figure 7.b, the 
presence of metallic minerals in rocks will not 
change the P-wave - density relationship of the 
compression waves as long as the density of rocks 
remain at the level of the density of rocks without 
metal minerals (2.8 g/cm3). Salisbury et al. (1997) 
(Figure 7.d), investigated the relationship 
between P-wave velocity and density of sulfide ore 
samples at a lateral pressure of 200 MPa. For high-
grade metal minerals such as iron ore or high-
grade sulfides, they concluded that most minerals 
are denser than their host rocks. The P-wave 
velocity of ore is close to that of their host rocks 
(overlapping) (Malmir et al. 2012; Schetselaar and 
Bellefleur 2019). They also concluded that 
changes in P-wave velocity in different rocks from 
unconsolidated and sedimentary rocks to mafic 
igneous rocks (peridotite, eclogite) vary 
drastically (Figure 7.e). These studies showed that 
the acoustic impedance (product of density and P-
wave velocity) of some ores such as pyrite, 
magnetite and hematite is much higher than 
conventional host rocks (Figure 7.f). Minerals of 
base metals such as sphalerite, chalcopyrite and 
galena have lower acoustic impedance than mafic-
ultramafic rocks. Nevertheless, deposits of these 
minerals are commonly found in felsic rocks such 
as granitoids or sedimentary rocks, and again 
there is a sharp contrast in acoustic impedance. 
Accordingly, they predicted that seismic 
exploration of ore deposits containing a large part 
of these minerals would be possible. Here, 
diversity of lithology is less than the studies 
mentioned above, but their results are confirmed 
(Figure 7.e). However, as stated above, when the 
percentage of mineral in the ore is low, the P-wave 
velocity is similar to the P-wave velocity of the 
host rocks. 
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Figure 7. a: Relationship between P-wave velocity and density (○Soroush et al. 2011; ● Kahraman and Yeken 
2008; and ▲ Results of Garia et al. 2019);b: relationship between p-wave velocity, density, and susceptibility; 
c: the relationship between p-wave velocity, density and porosity; d:   P-wave velocities and densities of sulfide 
ores and silicate host rocks at a pressure of 200 MPa (Salisbury et al. 1997) (pyrite (py), chalcopyrite (cpy), 
sphalerite (sph) and pyrrhotite (po) Also includes silicate rocks along the Nafe-Drake curve including 
sedimentary rocks (SED), serpentinite (SERP), felsic (F), mafic (M), ultramafic (UM) and carbonate (C)); e: 
Adaptation of the relationship between P-wave velocity and density of these studies with the design presented 
by Salisbury et al. (1997); f: Relationship between P-wave velocity and density and acoustic impedance (Z  

sound impedance multiplied by 103 kg/m2.sec) 
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Figure 8. Samples containing magnetite and 
hematite minerals including samples of Ravar 
sandstone (Ra70, Ra91), samples of Lake Siah 
hematite mineral (61 to 69, 75, 87 and 88) and 
samples of Lake Siah dolomites (33,76, 77,92,93) 

3.3. Relationship Between P-Wave Velocity 
And Porosity 

Examination of the P-wave velocity - porosity 
relationship on volcano-sediments and 
sedimentary rocks shows that P-wave velocity 
decreases when porosity increases (Figure 9). 
This is the same as studies conducted on 
carbonate rocks by others such as Wilkens and 
Salisbury, 1996; Kahraman and Yeken, 2008. One 
of the reasons for the scattering of points in figure 
9 is metal minerals. For example, Lake Siah 
samples have hematite and magnetite metal 
minerals, and Sechahoon samples have magnetite 
minerals with metamorphic texture. In this 
diagram, Lake Siah samples are the upper limit 
and Sechahoon samples are the lower limit of the 
P-wave velocity. 

 

Figure 9. Relationship between P-wave velocity 
and porosity 

3.4. Relationship Between Electrical 
Resistivity And Porosity 

The physical properties of the samples 
demonstrated that there is an exponential 
relationship between electrical resistivity and 
porosity (Figure 10). Concerning iron ore mines, 
Lake Siah data constitute the highest exponential 
curve and the lowest limit is related to the 
exponential curve of Chahgaz data. Most curves 
have a parallel decreasing trend except for 
Choghart and Sechahoon data in which the 
decreasing trend is much sharper. The data of Taft 
travertine (sedimentary type) that is out of the 
range mentioned above, form the upper limit of 
these almost parallel curves and are consistent 
with other studies such as Matsui et al. 2017 who 
based their studies on a set of sedimentary, 
igneous and metamorphic rocks. It should be 
noted that the electrical conductivity of rocks is 
controlled by three parameters: pore water 
salinity (conductivity), conductive solid minerals 
such as clays that cover the surface of insulative 
minerals and electronic conductivity that is 
created by metal minerals (Telford et al., 2005). 
Porosity is just one of the parameters that show 
the effect of porous space connected and filled 
with electrolytes (Archie, 1941). These curves 
show the dependence of electrical resistivity on 
texture. 

 

 

Figure 10. Relationship between electrical 
resistivity and porosity 
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3.5. Relationship Between Electrical 
Resistivity And Density 

Density vs. electrical resistivity of samples 
shows that there is a significant relationship 
between these two parameters for data with a 
density of less than 2.8 g/cm3. The samples with 
higher density contain metal minerals and show 
no correlation with electrical resistivity (Figure 
11). In this research, the density vs. electrical 
resistivity for samples with a density of less than 
2.8 g/cm3 was compared with the research of 
Menier et al. 2020. It can be concluded that the 
samples used in this study did not have high 
alteration (Figure 11). Comparing P-wave velocity 
vs. density with electrical resistivity vs. density 
determined that in samples containing a large 
number of metal minerals, neither P-wave velocity 
nor electrical resistivity is estimated correctly. 

 

 

Figure 11. Relationship between density and 
electrical resistivity (compared with studies by 
Menier et al. 2020) 

 

 By increasing the metal content till density is 
more than 2.8 g/cm3, the possibility of connecting 
metal minerals (conductive minerals) and 
creating new paths for the passage of electrical 
current increases, and consequently the electrical 
resistivity decreases. This reduction in electrical 
resistivity may be misinterpreted with an 
alteration. Hence, the presence of metal minerals 
when density is more than 2.8 g/cm3 does not 
follow the usual trend in the passage of electrical 
current and passage of P-wave velocity thus 
leading to inappropriate interpretation. 
Measuring induced polarization which is sensitive 
to both conductive minerals and alteration can 
compensate for the limitations of the electrical 
resistivity method.[45],[46] The presence of 

sulfide minerals such as pyrite (for example in 
Koushk sample) increases the density and also 
decreases the electrical resistivity. This is because 
electrical current paths increase when there is 
more possibility of contact with sulfide conductive 
minerals.[39] Lake Siah samples contain 
prominent hematite minerals as well as magnetite 
minerals which has increased the density of the 
samples. Samples of Sechahoon also contain 
magnetite which is conductive and reduces the 
electrical resistivity of the sample. Lake Siah 
samples have higher electrical resistivity due to 
the presence of hematite minerals. Considering 
Figure 11, it seems that there is a direct 
relationship between the logarithm of electrical 
resistivity and the density of samples containing 
hematite and magnetite minerals in Lake Siah and 
Sechahoon. This relationship occurs in the density 
range of 4-5 g/cm3 (around the density of nearly 
pure hematite and magnetite) and its trend is 
close to the trend of samples containing low metal 
minerals with a density of less than 3 g/cm3. 
 

3.6. Relationship Between Electrical 
Resistivity And P-Wave Velocity 

The relationship between P-wave velocity and 
electrical resistivity indicates a correlation of 0.65 
(Figure 12). This relationship shows a clear 
increase in electrical resistivity as P-wave velocity 
increases. Considering the discussion on the 
relationship between electrical resistivity vs. 
porosity and P-wave velocity vs. porosity as well 
as the correlation between porosity and both P-
wave velocity and electrical resistivity, it seems 
that porosity is one of the important factors 
controlling these parameters (Figure 13). 

 

 
Figure 12. Relationship between P-wave velocity 

and electrical resistivity 
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Figure 13. Relationship between P-wave velocity 
and electrical resistivity (porosity range indicated 
by color scale) 

Table 2. Correlation (R2) between physical 
properties of Anomaly VI samples 

γ ne ρ Vp  
0.27 0.51 0.48 1 Vp 
0.19 0.67 1 0.48 ρ 
0.29 1 0.67 0.51 ne 

1 0.29 0.19 0.27 γ 
 

Table 3. Correlation (R2) between physical 
properties of Choghart samples 

γ ne ρ Vp  
0.07 0.54 0.52 1 Vp 

0.62 0.70 1 0.52 ρ 
0.04 1 0.70 0.54 nen 

1 0.04 0.62 0.07 γ 
 

Table 4. Correlation between physical properties of 
Sechahoon samples 

γ ne ρ Vp  
0.08 0.17 0.11 1 Vp 

0.55 0.17 1 0.17 ρ 
0.08 1 0.17 0.17 ne 

1 0.08 0.55 0.08 γ 
 

Table 5. Correlation (R2) between physical 
properties of Lake Siah samples (H: hematite, D: 
dolomite) 

γ ne ρ Vp  
0.60 H 

0.60 0.70 1 Vp  
0.77 D 
0.54 H 

0.81 1 0.70 ρ 
0.65 D 
0.55 H 

1 0.81 0.60 ne 
0.67 D 

1 0.55 H 0.54 H 0.6 H 
γ 

0.67 D 0.65 D 0.77 D 

 

Table 6. Correlation (R2) between physical 
properties of Chahgaz samples 

γ ne ρ Vp  
0.39 0.62 0.81 1 Vp 

0.44 0.63 1 0.81 ρ 
0.37 1 0.63 0.62 ne 

1 0.37 0.44 0.39 γ 
 

Table 7. Correlation (R2) between physical 
properties of Taft travertine and Bishedar marble 

samples 

γ ne ρ Vp  
0.44 0.58 0.50 1 Vp 

0.32 0.88 1 0.50 ρ 
0.52 1 0.88 0.58 ne 

1 0.52 0.32 0.44 γ 
 
According to the correlation coefficients of 

physical properties in each zone (Tables 2-7), 
there is a good correlation between P-wave 
velocity and electrical resistivity in all the zones 
except for Sechahoon which has both alteration 
and metal minerals. Also, both parameters of P-
wave velocity and electrical resistivity are 
dependent on porosity. In all the samples, the 
relationship between density and other 
parameters has the least correlation. 

3.6. Investigating The Relationship Between 
Mechanical Properties And Physical 
Properties 

So far, a lot of research has been conducted on 
the use of P-wave velocity in estimating 
mechanical properties of rocks, and this 
parameter is known as a non-destructive test to 
estimate the mechanical properties. However, 
little research has been done to investigate the 
relationship between electrical resistivity and 
mechanical properties of rocks. According to the 
physical and mechanical experiments performed 
on 300 samples of this study (summarized in 
Table 8 and Figure 14), electrical resistivity like P-
wave velocity is correlated with mechanical 
properties. Comparison of P-wave velocity and 
electrical resistivity with each of these mechanical 
properties indicates that electrical resistivity is 
also sensitive to mechanical properties; P-wave 
velocity is dependent on porosity (at least for 
densities less than 2.8 g/cm3); and correlation of 
electrical resistivity with porosity is higher than P-
wave velocity. UCS (Figures 14a and 14b), Tensile 
strength (Figures 14c and 14d) and point load 
index (Figures 14e and 14f) increase when 
porosity decreases. On the other hand, when 
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porosity decreases, P-wave velocity and electrical 
resistivity of the rocks increase. Considering the 
high correlation between electrical resistivity and 
porosity, electrical resistivity like P-wave velocity 
has the ability to estimate the mechanical 
properties of rocks. Table 8 shows the statistical 
relationships between P-wave velocity and 
electrical resistivity with UCS and tensile strength 

of samples in different zones. The coefficients of 
determination of UCS with physical properties are 
higher than coefficients of determination of 
indirect tensile strength (Brazilian test) and point 
load index with physical properties. This is due to 
the dispersion of the results obtained by the 
Brazilian method in estimating tensile strength 
and also the point load index in estimating UCS. 

  

 

Figure 14. Relationship between mechanical properties and P-wave velocity and electrical resistivity, a and b) 
UCS, c and d) Tensile strength, e and f) point load index vs. P-wave velocity and electrical resistivity, 

respectively. 
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Table 8. Relationship between P-wave velocity and electrical resistivity with UCS and tensile strength in the 
studied areas 

 

Sampling location Test Vp R2 ρ R2 

Anomaly VI 
UCS Ucs = 0.0063  Vp - 5.065 0.52 Ucs =9.43 ρ0.14 0.53 

σt σt = 0.0026  Vp - 6.09 0.35 σt =1.04 Ln ρ -1.48 0.41 

Choghart 
UCS Ucs =2.16 e 0.0006Vp 0.73 Ucs =9.37Ln ρ -4.40 0.51 

σt σt = 0.0007  Vp +1 0.13 σt =0.8 Ln ρ +2.3 0.12 

Lake Siah 
UCS Ucs = 0.027 Vp - 66.56 0.46 UCS =14.7 Ln ρ -32.6 0.82 

σt σt = 0.0009  Vp + 0.84 0.42 σt =0.23Ln ρ +3.63 0.23 

Sechahoon σt σt = 0.0012  Vp - 1.17 0.11 σt =0.001 ρ +2.99 0.57 

Chahgaz UCS Ucs = 3.30 e 0.0004Vp 0.50 Ucs = 11.89 e 0.0009 ρ 0.64 

Bishehedar Marble and Taft 
Travertine σt σt = 0.0007 Vp - 1.41 0.07 σt =0.15Ln ρ +1.09 0.10 

 
 

4. CONCLUSION  

In this study, physical (density, porosity, P-
wave velocity, and electrical resistivity of rocks 
saturated by water with conductivity of 1 S/m) 
and mechanical properties (UCS, indirect tensile 
strength, and point load index) of 300 samples 
taken from nine zones at Central Iran (Anomaly VI, 
Choghart, Sechahoon Koushk, Chahgaz, Lake Siah, 
Bishedar as well as two zones in Taft and Ravar in 
west and east of Central Iran respectively) were 
identified by performing more than 1800 tests and 
measurements. These samples are of volcanic, 

plutonic, metamorphic and sedimentary types. 
It is noted that the samples contained different 

percentages of conductive metal minerals (such as 
magnetite) and non-conductive metal minerals 
(such as hematite). Measured magnetic 
susceptibility can indicate the presence of 
magnetic minerals, especially magnetite. The 
samples had different degrees of alteration and 
comparing results of this study with the results 
obtained from previous studies show that these 
samples are not highly altered. As in other studies, 
the effect of structure and texture (metallic 
minerals, alteration, microfractures) is also 
observed in the results of this study. It is suggested 
that a detailed investigation of the structure and 
texture of the samples; especially fracturing and 

alteration, be investigated in future studies. 
The results demonstrated that samples with 

high content of metallic minerals (conductive or 
non-conductive) were not appropriately 
estimated by either P-wave velocity or electrical 
resistivity and may lead to misinterpretation of 
the data. It was proved that samples with a density 
of less than 2.8 g/cm3 can be used in estimating 

the physical and mechanical properties of the 

rocks. 
According to the results, the linear relationship 

between the logarithm of electrical resistivity and 
P-wave velocity is affected by porosity. In other 
words, both parameters increase or decrease 
when porosity increases or decreases 
respectively. Given the negligible initial porosity 
of the samples, the increased porosity may be the 

result of fracturing and alteration. 

The correlation of mechanical properties 
especially UCS with electrical resistivity on one 
hand, and control of both parameters of electrical 
resistivity and P-wave velocity by porosity on the 
other hand shows that electrical resistivity can 
also be used in estimating mechanical properties 
of rocks.  
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