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Keywords  Abstract 

Power spectrum – area fractal (S-A fractal) method has been 
frequently applied for geochemical anomaly mapping. Some 
researchers have performed this method for separation of 
geochemical anomaly, background and noise and have delineated 
their distribution maps. In this research, surface geochemical 
data of Zafarghand Cu-Mo mineralization area have been utilized 
and some defects of S-A fractal method have been discussed. The 

surface geochemical data were transformed to the frequency domain using Fourier transformation and the 
S-A fractal method was performed on obtained Cu power spectrum. 4 geochemical classes were 
distinguished on the basis of fractal diagram then these classes were separated using various filters and 
their signals were analyzed separately by principal component analysis (PCA) and the situation of 
mineralization was interpreted. PCA shows the low frequency geochemical signals have strongly been 
affected by the Cu and Mo mineralization process. In the end, the Cu geochemical anomaly map based on 
this low frequency class was delineated using inverse Fourier transformation. The deep borehole that was 
drilled in the center of this obtained anomaly shows there is a mineralization zone at the depth. The 
disadvantages of S-A fractal method have been discussed using these obtained results. 
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1. INTRODUCTION 

Interpretation of geochemical data is an 
important subject in the mineral explorations. 
Fractal analysis is a conventional approach for 
geochemical mapping. The variety of geology 
units, alterations and mineralization processes 
can cause the various geochemical societies. 
Fractal methods can distinguish and discriminate 
these geochemical classes. Until now, various 
fractal methods such as concentration-area, 
concentration-volume have been performed for 
interpretation of geochemical data [1-4]. The S-A 
fractal method was proposed for determination 
of geochemical societies in the frequency domain. 
This method separates the geochemical patterns 
on the basis of the feature of self-similarity in 
geochemical signals [5]. The geochemical data 
have more been interpreted in the spatial 
domain. In addition to the spatial domain, the 
frequency domain can also be used for accessing 
the exploratory information in the geochemical 
data. The frequency spectrum analysis of 

geochemical elements in the frequency domain 
has been used to identify the behavioral patterns 
of the elements [6 - 10]. 

The new exploratory information can be 
obtained using the frequency domain of 
geochemical data that cannot be easily obtained 
from the spatial domain. Using the frequency 
domain, it can be shown that there is a 
relationship between the surface frequency 
signals and the depth of the mineral deposits 
[10]. Some researchers have used the S-A fractal 
method in the frequency domain [4, 5, 11, 12, 13]. 
The S-A fractal method has also been applied on 
the mineralization factors derived from the PCA 
method [14]. 

In the S-A fractal method, the different 
frequency groups of the data are analyzed. This 
method assumes that very high frequencies are 
caused by the geochemical noise and the 
intermediate frequencies are related to the 
mineralization and geochemical anomalies and 
the low frequencies are related to the 
geochemical background of elements. This paper 
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shows that this assumption has flaw and the very 
low frequencies include the strong mineralization 
patterns thus should not be filtered as the 
background component. PCA has been used for 
discussing of this issue. 

Proper exploratory information can be 
obtained using PCA as a dimension reduction 
method. Determining the elements associated 
with mineralization and identifying the 
mineralization patterns are important issues in 
mineral exploration. In order to detecting the 
mineralization factor and determining the 
paragenesis elements, PCA method has been 
performed on the spatial and frequency domain 
of geochemical data. The PCA as a multivariate 
analysis method is a useful tool for combining 
several dependent variables and reducing the 
dimension of the data set in the independent 
principal components based on the covariance 
and correlation coefficients [15]. 

2. THE POWER SPECTRUM-AREA FRACTAL 
METHOD 

A: Transferring the geochemical data from the 
spatial domain to the frequency domain: After 
interpolating the geochemical data and mapping 
the raster data, the geochemical distribution map 
is transformed to the frequency domain using 
two-dimensional Fourier transformation. The 
Fourier transformation of a function is calculated 
as follows [16, 17]: 

dx)x(fe)(Ff xi






  (1) 

)(Ff is the Fourier transformation of f(x) 

function. The different signals in the geochemical 
distribution map can be discriminated using the 
Fourier transformation. The Fourier 
transformation algorithm is implemented in the 
MATLAB software. 

B: Delineating the logarithmic graph of fractal: 
The values of the logarithmic power spectrum 
values versus the logarithm of cumulative 
corresponding areas are plotted. Using this 
graph, we can fit several straight lines to the data 
and determine the breakdown points of the 
graph, which show the threshold values. 

The S-A fractal method consists of high-
frequency spectral energy densities S [A (> S)] in 
a two-dimensional frequency domain and the 
fractal relationship is as follows: 

 /dS)S(A 2
 (2) 

Where β represents the amount of anisotropy 
and d is the generalized scale invariance 

parameter (GSI) [18]. For a two-dimensional 
linear case, the relation is defined as follows: 

 /2)(  SSA  (3) 

C: Data filtering and inverse Fourier 
transformation: At this stage, the filters are 
designed based on the threshold values and 
applied to the data. The results are then 
transferred to the spatial domain using the 
inverse Fourier transformation and different 
maps are obtained accordingly [19]. The 
following equation shows the inverse Fourier 
transformation [16, 17]. 






 


 de)(Ff)x(f xi

2

1
 (4) 

3. GEOLOGY, MINERALIZATION AND 
ALTERATIONS OF THE AREA 

Zafarghand area has been located in the 
northeast of Isfahan and 22 km the south of 
Ardestan city and 6 km the west of Zafarghand 
village. This area has been located on the Uromia-
Dokhtar volcanic belt and at the edge of the 
central Iran zone, so it may have significant 
potential for copper or other elements (Figure 1) 
[20]. 

Lithological units of this exploration area 
mainly consist of dacite, andesite, basalt, diorite 
and alluvium. Most of these rock units have 
strongly been altered by the hydrothermal 
solutions and have created alteration zones from 
the center of the porphyry system to the margins 
including phyllic, argillic and propylitic. The 
potassic alteration is also observed in some parts 
of the region. Iron hydroxides (hematite, goethite 
and jarosite) are most commonly seen in relation 
to the central alterations. The siliceous veins and 
the stockwork veinlets of quartz-magnetite that 
have filled the joints are related to the copper 
mineralization (malachite and azurite). The 
phyllic and potassic alterations, such as iron 
oxide alteration, are strongly observed with the 
quartz diorite and porphyry dacite at the center 
of the alteration system. The most important 
rocks in this porphyry system are dacite 
porphyry, rhyolite dacite porphyry and quartz 
diorite surrounded by the porphyry andesite and 
andesitic pyroclasts. In some parts, the quartz 
veins are observed with the copper 
mineralization up to 4 meters thick and 30 
meters long. Chalcopyrite, pyrite, galena, 
sphalerite, malachite and iron oxide minerals are 
present in the silicified and quartz veins. The 
potassic alteration is found in the microdiorites 
in the southern region of Zafarghand. The 
propylitic alteration is widespread throughout 
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the region and surrounds the argillic alterations 
in the north, south, and west of area [20]. 

 

Figure 1. Geological map and location of the 
Zafarghand area in the Uromia - Dokhtar belt [10]. 

4. RESULTS AND DISCUSSION 

In this area, 177 geochemical samples were 
taken and analyzed by ICP method for 43 
elements. The location map of these samples is 
shown in figure 2. 

 

Figure 2. The location of geochemical samples in 
the study area 

Identification of frequency characteristics of 
elements is important for achieving the 

exploratory information and investigating the 
situation of mineralization. In this study, the S-A 
fractal method and the PCA method were used 
together for detecting the geochemical properties 
of mineralization elements. This combined 
method can show the difference of frequency 
behavior of mineralization elements with 
background elements. Firstly, the geochemical 
data for all of elements were transformed to the 
frequency domain using 2 dimensional Fourier 
transformation. The power spectrum values of 
elements and the wave numbers in the horizontal 
and vertical direction were obtained using this 
transformation. 

Figure 3 shows the distribution of logarithmic 
values of the Cu power spectrum values for 
different wavelengths in the Zafarghand area. The 
horizontal and vertical axes show the values of 
the wave number in the x and y directions 
respectively. 

 

Figure 3. The distribution map of the Cu power 
spectrum values in the study area 

The power spectrum values are calculated for 
each wave number and plotted logarithmically. 
As the power spectrum values increase, the 
frequency and wave numbers decrease. 

The elements that are related to each other 
and hold common genesis will be similar in their 
power distribution map, especially if they have 
similar mobility powers. For this reason, the 
paragenesis elements have similar frequency 
behaviors and hence interesting information 
about the mineralization processes can be 
obtained in the frequency domain. 

After transferring data to the frequency 
domain, the fractal method is applied on the 
power spectrum values of the mineralization 
element. According to the fractal method, the 
power spectrum values of the copper element 
were divided into 4 classes (Figure 4). A 
summary of the attributes of these classes are 
seen in Table 1. The Cu frequency data were 
divided into 4 classes with low, low to medium, 
medium to high, and high frequencies on the 
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basis of the fractal method. Class 1 shows the 
values of the low power spectrum values that are 
related to the high frequencies. In the S-A fractal 
method, this class is known as geochemical noise, 
and these signals are filtered and removed from 
the data. Classes 2 and 3 are related to the 
intermediate power spectrum values and their 
frequencies are considered as anomalous signals 
in the S-A fractal method. Class 4 is related to the 
high power spectrum values and shows the low 
frequency geochemical signals. In the S-A fractal 
method, these signals are assumed as the 
geochemical background and they are removed 
from the data using a low-pass filter. According to 
the S-A fractal method only class 2 and 3 are 
related to the mineralization process and there 
are no mineralization effects in the class 1 and 
especially in the class 4. While this is not accurate 
and sometimes the high and low frequency 
signals include the important information about 
the mineralization processes and should not be 

completely removed from the data. The strong 
effects of mineralization on the low and high 
frequencies of geochemical data have also been 
previously detected [10, 21, 22]. In order to 
investigating this important issue, the frequency 
classes obtained from the S-A fractal method 
have been interpreted in this study. 

 

Figure 4. The S-A fractal diagram for the copper 
element in the frequency domain 

Table 1. The characteristics of frequency classes obtained based on the S-A fractal method for Cu element 

Frequency 
classes 

Low threshold for 
power spectrum 

High threshold for 
power spectrum 

Frequency 
signals 

Interpretation based on 
the S-A fractal method 

Class1 26 10000 High noise 
Class2 10000 3194550 Moderate to high Anomaly 
Class3 3194550 364863612 Low to moderate Anomaly 
Class4 364863612 18310000000 low background 

 

The frequency signals in the class 4 were 
studied to investigate the mineralization 
attributes at the very low frequencies and to 
evaluate the relationship between these 
frequencies and the mineralization process. 
Therefore, the frequencies of this class were 
separated from the other frequencies using the 
low pass filter and eliminate the rest of the 
frequencies. The frequency distribution map of 
class 4 has been plotted in figure 5. As can be 
seen, these values are at the center of the power 
spectrum distribution map and, on the other 
hand, the magnitude of the frequency spectrum of 
this class is larger than the other classes that 
indicates the high amplitude of these signals in 
this frequency class. The frequency signals with 
high amplitude hold important role in 
reconstructing the initial two-dimensional wave, 
which is the geochemical distribution map of the 
element. 

Therefore, the class 4 with high power 
spectrum values plays an important role in the 
reconstruction of the Cu geochemical distribution 
map in the region. The significance of this 
frequency class was investigated by PCA. 

 

Figure 5. The Cu power spectrum distribution map 
in the class 4 using low pass filter based on the S-A 
fractal method 

The various frequency classes were separated 
using different filters based on the obtained 
threshold values. 

In order to determine the mineralization 
status in different frequency classes and to study 
the behavior of elements related to the 
mineralization process, the PCA method was 
performed on these classes separately. The 
results of PCA for classes 2, 3, and 4 are shown in 
Table 2. This table shows the principal 
components extracted from the data for each 
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class based on the correlation coefficients of the 
elements. The paragenesis elements that are 
related to the mineralization process hold higher 
values in the mineralization principal component 
(table 2). 

The principal components related to the 
mineralization and their elements have been 
identified in the each of these classes. The values 
greater than 0.6 have been designated as 
significant values in this table. In class 2, which 

corresponds to moderate to high frequencies, 
component 3 includes Ag, Mo, S and Pb and has 
been known as mineralization factor. As can be 
seen, copper is not found in any of the factors and 
has no specific role in this frequency class. This 
demonstrates the low importance of the Cu 
element in this frequency class, while Cu is the 
most important mineralization element in the 
region. 

Table 2. The results of PCA on the class 2, 3 and 4 based on the S-A fractal method 

 
Components in class4 

 
Components in class3 

 
Components in class2 

1 2 1 2 3 4 1 2 3 4 5 

Au 0.95 0.30 Au 0.77 0.24 0.21 0.32 Au 0.44 0.42 0.43 0.61 -0.13 

Al 0.97 0.26 Al 0.16 0.82 0.25 0.17 Al 0.33 0.79 0.37 0.27 -0.04 

Ca 0.95 0.30 Ca 0.18 0.93 0.14 0.10 Ca 0.45 0.33 0.02 0.78 0.11 

Fe 0.96 0.27 Fe 0.27 0.86 0.16 0.19 Fe 0.14 0.71 0.25 0.39 0.40 

K 0.94 0.33 K 0.92 0.28 0.22 -0.04 K 0.84 0.31 0.13 0.14 0.27 

Mg 0.95 0.32 Mg 0.30 0.95 0.01 0.00 Mg 0.29 0.33 0.18 0.86 0.09 

Na 0.95 0.31 Na 0.96 0.11 0.17 0.12 Na 0.42 0.77 0.45 0.06 0.00 

Ag 0.96 0.28 Ag 0.27 0.14 0.65 0.39 Ag 0.18 0.44 0.76 0.33 0.10 

As 0.91 0.40 As 0.27 0.14 0.84 -0.02 As 0.81 -0.06 0.55 0.10 0.05 

Ba 0.95 0.31 Ba 0.88 0.44 -0.03 -0.03 Ba 0.24 0.49 0.25 0.69 0.18 

Be 0.96 0.26 Be 0.45 0.77 0.28 -0.08 Be 0.88 0.29 0.29 0.10 0.01 

Bi 0.97 0.26 Bi 0.67 0.62 0.13 0.10 Bi 0.06 0.38 0.32 0.69 0.33 

Cd 0.95 0.30 Cd 0.94 0.21 0.13 0.08 Cd 0.21 0.68 0.28 0.16 0.38 

Ce 0.97 0.26 Ce 0.82 0.35 0.31 0.06 Ce 0.90 0.35 0.02 0.06 0.11 

Co 0.95 0.31 Co 0.30 0.94 0.05 0.09 Co 0.08 0.46 0.18 0.78 0.33 

Cr 0.62 0.74 Cr 0.18 0.84 0.24 -0.06 Cr 0.66 0.64 0.20 0.19 0.14 

Cs 0.97 0.26 Cs 0.42 0.30 0.58 0.07 Cs 0.74 0.21 0.59 0.13 0.07 

Cu 0.33 0.91 Cu 0.03 0.10 0.49 0.66 Cu 0.34 0.20 -0.02 0.05 0.47 

La 0.97 0.26 La 0.83 0.18 0.40 0.07 La 0.95 0.13 0.11 0.16 0.09 

Li 0.93 0.35 Li 0.21 0.92 0.10 0.17 Li 0.10 0.74 0.24 0.57 0.11 

Mn 0.93 0.38 Mn 0.73 0.54 0.18 0.20 Mn 0.22 0.78 0.37 0.24 0.24 

Mo -0.12 0.96 Mo 0.25 0.38 0.53 0.34 Mo 0.14 0.30 0.89 0.18 0.14 

Nb 0.96 0.27 Nb 0.21 0.93 0.15 0.05 Nb 0.71 0.06 0.45 0.52 -0.02 

Ni 0.81 0.53 Ni 0.15 0.93 0.09 0.10 Ni 0.13 0.83 0.28 0.41 0.08 

P 0.96 0.28 P 0.53 0.78 -0.02 0.24 P 0.13 0.25 0.78 0.52 0.04 

Pb 0.63 0.59 Pb 0.38 0.25 0.51 0.35 Pb 0.16 0.08 0.95 0.11 0.08 

Rb 0.96 0.29 Rb 0.88 0.20 0.35 -0.09 Rb 0.94 0.19 0.11 0.10 0.17 

S 0.51 0.63 S 0.50 0.72 0.14 0.14 S 0.16 0.45 0.62 0.46 0.23 

Sb 0.97 0.26 Sb 0.62 0.29 0.42 0.12 Sb 0.19 0.18 0.85 0.12 0.28 

Sc 0.96 0.29 Sc 0.38 0.89 0.16 -0.07 Sc 0.68 0.57 0.20 0.35 0.09 

Sn 0.97 0.26 Sn 0.21 0.21 0.10 0.84 Sn 0.28 0.12 0.26 0.18 0.69 

Sr 0.95 0.31 Sr 0.66 0.60 0.14 0.14 Sr 0.13 0.93 0.12 0.22 0.11 

Te 0.97 0.26 Te 0.88 0.22 0.11 0.22 Te 0.53 0.49 0.63 0.11 0.05 

Th 0.96 0.27 Th 0.93 0.33 0.07 0.02 Th 0.66 0.08 0.22 0.61 0.29 

Ti 0.96 0.27 Ti 0.50 0.75 0.32 0.13 Ti 0.87 0.16 0.24 0.37 0.08 

Tl 0.97 0.26 Tl 0.72 0.19 0.52 0.10 Tl 0.92 -0.08 0.31 0.09 0.13 

U 0.97 0.26 U 0.88 0.43 0.01 0.14 U 0.17 0.94 0.24 0.08 -0.05 

V 0.95 0.31 V 0.35 0.91 0.16 -0.01 V 0.70 0.36 0.07 0.54 0.21 

W 0.96 0.29 W 0.83 0.49 0.15 -0.03 W 0.15 0.22 0.93 0.09 0.13 

Y 0.95 0.32 Y 0.73 0.47 0.33 0.11 Y 0.53 0.28 0.79 0.08 -0.01 

Yb 0.96 0.29 Yb 0.70 0.59 0.22 0.11 Yb 0.46 0.33 0.81 0.08 0.01 

Zn 0.95 0.31 Zn 0.78 0.05 0.35 0.42 Zn 0.07 0.09 0.25 0.43 0.71 

Zr 0.96 0.28 Zr 0.14 0.89 0.12 0.30 Zr 0.14 0.91 0.07 0.31 0.09 

 

In class 3, which includes low to moderate 
frequencies, the principal component 4 has been 
considered as a mineralization factor and 
contains only Cu element. In this frequency class, 
Mo element does not play an important role in 

any of the principal factors and the frequency 
behavior of this element is not significant in this 
class. Since the mineralization in this area is Cu-
Mo type, none of the frequency classes in the mid-
frequency range do not illustrate these two 
elements as paragenesis elements in the 
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mineralization process. The behavior of these 
two elements in the class 2 and 3 are not similar 
together and are not very different from the 
background elements. 

In other words, the mineralization factor in 
these frequency classes is not very prominent 
and this reduces the importance of these 
frequency classes in determining the 
mineralization characteristics. The results of the 
PCA on the class 4 which consists of very low 
frequencies are also shown in the table 2 and 
significant results have been achieved in this 
frequency class. 

The PCA as a dimension reduction method can 
reduce the dimension of the geochemical 
variables based on the similarity and correlation 
between the elements. The PCA extremely 
reduced 43 features of the class 4 to 2 factors 
(table 2). This reduction in the number of 
features is a significant consequence and rarely 
occurs in data analysis field. This interesting 
result is directly related to the specific relations 
between the features (elements) in this dataset. 

The Cu and Mo elements are together in the 
mineralization factor. The Cr and S elements are 

also found in this factor. The other elements are 
in the first factor which is the geochemical 
background factor. In this frequency class, the 
mineralization elements including copper and 
molybdenum are properly separated from other 
elements. The other elements that are considered 
as the background elements are in factor 1. These 
large numbers of elements behave quite similar 
to each other and behave differently to the 
mineralization elements in the frequency domain. 
The results in the class 4 show a very strong 
distinction between the mineralization and 
background elements, and copper and 
molybdenum are also well associated. 

These results of frequency class 4 are more 
appropriate than the class 2 and 3 that related to 
the moderate frequencies and are more 
consistent with the mineralization reality of the 
region. The background elements in the class 4 
have more similarity behaviors than the 
moderate frequency classes. Figure 6 illustrates 
how copper and molybdenum elements are 
separated from the other elements in the class 4 
using the PCA method. 

 

Figure 6. Separation of the mineralization elements from the background elements using the principal 
components obtained by PCA on the frequency class 4. 

The remarkable results obtained in the class 4 
show there are very strong effects of 
mineralization in these frequency data. Hence, 
this frequency class contains important 
exploratory information that can be used for 
identifying the mineralization elements and 
geochemical anomaly mapping. While, according 
to the S-A fractal method this frequency class is 

supposed as geochemical background and filtered 
from the data. Filtering and removing the 
frequency signals of this class will cause the 
losing a lot of exploratory information. These 
frequency signals that contain the significant 
information can be used for determination of the 
anomaly area. Figure 7 shows the Cu geochemical 
distribution map that obtained using the 
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geochemical data in spatial domain and consists 
the all of frequency signals. 

In order to determine the anomaly areas of 
the class 4, this frequency class was separated 
from the other frequencies and was transformed 
to the spatial domain using the inverse Fourier 
transformation method. The resulting map shows 
the distribution of copper values in the spatial 
domain corresponding to the low frequencies 
(Figure 8). The deep drilled borehole in the area 
are located precisely on the anomalies of this 
map, and good results have been obtained. 

 

Figure 7. The Cu geochemical anomaly map derived 
from the spatial geochemical data (containing all 
frequencies in the data) 

 

Figure 8. The Cu geochemical anomaly map 
obtained by class 4 and inverse Fourier 
transformation in the fractal method (low 
frequencies in Cu geochemical data) 

The distribution of S, Cu and Mo in different 
depths of this borehole indicates there is a 
mineralization zone at the depth (Figures 9 and 
10). The mineralization elements of deep ore 
deposits may migrate with low intensity to the 
surface and therefore be distributed weakly over 
the surface and produce the low frequency 
signals. Thus the mineralization elements can be 
distinguishable from the background elements in 
the low frequency signals. The location of these 

deep mineralizations can be detected using the 
low frequency geochemical signals. 

There is an interesting relationship between 
the nature of the frequencies of surface 
geochemical data and the depth of mineralization 
[10]. Deep mineralization generates very low 
frequencies at the surface. The all of low 
frequencies in the geochemical data are not 
related to the background and should not be 
removed from the data. 

Based on the conventional process in the S-A 
fractal method, the low frequency signals as 
background values are removed from the data. 
The results of this study demonstrates that these 
frequencies provide very useful exploratory 
information about the mineralization and by 
omitting these frequencies we lose a lot of 
information. The results showed that the 
frequency class 4 with very low frequencies hold 
much more information about the mineralization 
than the intermediate frequency classes.  

 

Figure 9. The variations of Cu and Mo 
concentrations at different depths and presence of 
the deep mineralization zone in the drilled 
borehole 
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Figure 10. The variations of sulfur element at 
different depths in the drilled borehole 

5. CONCLUSIONS 

In this paper, the validity and disadvantages 
of the S-A fractal method was investigated in a 
case study of Zafarqhand copper-molybdenum 
mineralization zone. After transferring the 
geochemical data of 43 elements to the frequency 
domain, the S-A fractal method was applied on 
the Cu power spectrum values and four 
frequency classes were obtained accordingly. To 
investigate the effects of mineralization process 
in these four frequency classes, the PCA was 
performed on these classes separately. Finally, 
the geochemical anomaly map of the class 4 
containing low frequencies was obtained by the 
inverse Fourier transformation. The following 
results were obtained on the basis of this study: 

- The PCA as a dimension reduction tool 
notably reduced the number of 43 features 
(elements) into 2 factors in the class 4. The high 
intensity of the dimension reduction in the low 
frequency class indicates the existence of 
important information in this class. 

- There are strong effects of mineralization in 
the low frequency signals in the class 4 which 
was properly detected using the PCA method. In 
this frequency class, mineralization elements 
including the copper and molybdenum were 
completely distinguished from other elements. 

- The anomaly distribution map was obtained 
for class 4 using the two-dimensional inverse 
Fourier transformation. The results of the drilled 
borehole show a good coincidence with the 
anomaly map obtained from the Class 4. This 
study indicates the importance of the low 
frequency signals of geochemical data for 
detecting the deep mineralization. 

- There are important exploratory information 
in the low frequency classes of the S-A fractal 
method hence filtering these frequencies will 
cause faults in the interpretation of geochemical 
data. Therefore, in this fractal method, the low 
frequencies of the data should not be eliminated 
from the dataset in the frequency domain.  

- The mineralization elements in the deep 
mineral deposits may have low migration to the 
surface and cause the weak surface geochemical 
anomalies with the low frequency signals. 
Therefore, the low frequencies in the data cannot 
be considered merely as background values and 
these frequencies may indicate the deep 
mineralization. 
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