شبیه سازی زمانی- مکانی تغییرات سیمای سرزمین با استفاده از مدل تلفیقی زنجیره مارکوف و سلولهای خودکار (مطالعه موردی: منطقه خشک و نیمه خشک میمه دهلران) | ||
خشک بوم | ||
مقاله 2، دوره 8، شماره 1، شهریور 1397، صفحه 11-26 اصل مقاله (2.02 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.29252/aridbiom.8.1.11 | ||
نویسندگان | ||
حسن فتحی زاد1؛ محمد زارع2؛ حاجی کریمی* 3؛ علی خنامانی1 | ||
1دانشجوی دکتری بیابان زدایی، دانشکده منابع طبیعی و کویر شناسی، دانشگاه یزد | ||
2استادیار گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و کویر شناسی، دانشگاه یزد | ||
3دانشیار گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه ایلام | ||
چکیده | ||
آشکارسازی و پیشبینی تغییرات کاربری ارضی، لازمه مراقبت از اکوسیستم به ویژه در کشورهای در حال توسعه با تغییرات سریع و اغلب بدون برنامه ریزی است. هدف از این تحقیق، پایش تغییرات کاربری ارضی در گذشته و بررسی امکان شبیهسازی آن در آینده با استفاده مدل تلفیقی زنجیره مارکوف و سلولهای خودکار در منطقه خشک و نیمه خشک میمه دهلران واقع در استان ایلام است. در این تحقیق از تصاویر ماهوارهای لندست (TM) سال 1988 و لندست (TM) سال 2001 و لندست (ETM+) سال2016 استفاده شد. با استفاده از طبقه بندی نظارت شده شبکه عصبی آرتمپ فازی، نقشه آشکارسازی تغییرات در هفت کلاس کشاورزی، جنگل، مرتع متوسط، مرتع فقیر، بیرونزدگی سنگی، اراضی مسکونی و اراضی شور و نمکزار تهیه گردید. دقت کل طبقه بندی نقشه های کاربری اراضی سالهای 1988، 2001 و 2016 به ترتیب 93، 95 و 93 درصد بدست آمد. با به کارگیری مدل تلفیقی زنجیره مارکوف و سلولهای خودکار، تغییرات کاربری اراضی برای سال 2030 پیش ینی شد. نتایج ماتریس پیش بینی تغییرات بر مبنای نقشه های سال های 2001 و 2016 نشان داد که در فاصله ی زمانی 2030-2016 احتمال می رود که 13% از اراضی کشاورزی، 54% از جنگل، 48% از مراتع متوسط، 82% از مراتع فقیر، 55% از بیرون زدگی سنگی، 52% از اراضی مسکونی، 93% از اراضی شوره زار و نمک زار به کاربری های دیگر تبدیل شوند. برای اعتبارسنجی مدل، نقشه کاربری اراضی شبیه سازی شده سال 2016 با نقشه واقعی حاصل از طبقه بندی تصویر ماهواره ای همان سال مقایسه شد. ضریب کاپا محاسبه شده حدود 87% که بیانگر قابلیت بالای مدل سلولهای خودکار برای شبیه سازی تغییرات سیمای سرزمین در منطقه خشک و نیمه خشک میمه دهلران است. | ||
کلیدواژهها | ||
آشکارسازی؛ شبکه عصبی آرتمپ فازی؛ ماتریس؛ مدل سلول خودکار؛ ایلام | ||
عنوان مقاله [English] | ||
Spatio-temporal Modeling of Landscape Changes using Markov Chain Compilation Model and Automated Cells (Case Study: Arid and Semi-Arid Area Dehloran) | ||
نویسندگان [English] | ||
H. Fathizad1؛ M. Zare2؛ H. Karimi3؛ A. Khanamani1 | ||
1Ph.D student of Combating Desertification, Department of Arid land Management, Faculty of Natural Resources and Eremology, Yazd University, Iran | ||
2Assistant Professor, Department of Arid land Management, Faculty of Natural Resources and Eremology, Yazd University, Iran | ||
3Associate Professor, Natural Resources Department, Agriculture Faculty, Ilam University, Ilam, Iran | ||
چکیده [English] | ||
Detection and prediction of changes in landscape, is necessary for the maintenance of an ecosystem, especially in developing countries with rapid changes and without planning. The object of this research, is monitoring landscape changes in past and it’s simulation for future using Markov chain Consolidated and automated cells (CA-Markov) in arid and semi-arid region of Meymeh Dehloran, Ilam. Landsat satellite images of (TM) 1985, Landsat (TM) 2000 and Landsat (ETM+) 2016 were used. Change detection maps were prepared in seven classes of agriculture, Forest, fair range, poor range, rocky protrusions, residential land and salt land using supervised classification ARTMAP FUZZY neural network. Accuracy of the classification landscape maps for 1985, 2000 and 2016, are 93, 95 and 93 percent, respectively. Changes in landscape were predicted for 2030, using Markov chain model and automated cells. Predicted matrix results based on 2001 and 2016 maps showed that in span of 2016-2030, it is likely that 13% of agricultural land, 54% of Forest, 48% of the fair range, 82% of poor range, 55% of rocky protrusions, 52% of the residential land, 93% of salt lands and marsh land converted to other land uses. To validating the model, simulated landscape map of 2016, were compared with satellite image classification of the same year. Kappa coefficient was 87%, which shows the high capabilities of CA-Markov model to simulate landscape changes in arid and semi-arid region of Meymeh Dehloran. | ||
کلیدواژهها [English] | ||
Detection, ARTMAP FUZZY neural network, Matrix, CA-Markov model, Ilam | ||
مراجع | ||
[1]. Baker, W. L. (1989). A review of models of landscape change. Landscape Ecology, 2: 111-133.
[2]. Balzter, H. (2000). Markov chain models for vegetation dynamics. Ecological Modelling, 126: 139-154.
[3]. Bell, E. J. (1974). Markov analysis of land use change: Application of stochastic processes to remotely sensed data. Socioeconomic PlanningSciences, 8: 311–316
[4]. Brown, D. G, B. C. Pijanowski., &. Duh, J. D. (2000). Modelling the relationships between land use and land cover on private lands in the Upper Midwest, USA. Journal of Environmental Management, 59: 247-263.
[5]. Carpenter, G. A., Gossberg, S., & Rosen. D. (1991). Fuzzy ART: fast stable learning and cat-egorization of analog patterns by an adaptive resonance system, Neural Network, 4: 759-771.
[6]. Dong Jie, G., HaiFeng, L., Takuro, I., Weici, S., Tadashi, N., & Kazunori, H. (2001). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 3761-3772.
[7]. Eastman, J.R. (2006). Idrisi for windows user’s guide ver.32. Clark University, 328 p.
[8]. Gilks, W. R. (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC.
[9]. Gil-Sáncheza, L., Garriguesa, J., Garcia-Breijoa, E., Graub, R., Marta, A., Baigtsb, D., & Baratb, J. M. (2015). Artificial neural networks (Fuzzy ARTMAP) analysis of the data obtained with an electronic tongue applied to a ham-curing process with different salt formulations. Applied Soft Computing, 30: 421-429.
[10]. Hathout, S. (2002). The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. Journal of Environmental Management, 66: 229-238.
[11]. He, Z., & Lo, C. (2007). Modeling urban growth in Atlanta using logistic regression. Computers. Environment and Urban Systems, 31 (6): 667-688.
[12]. Jenerette Darrel, G., & Wu, J. (2001). Analysis and simulation of land use change in the central Arizona-Phonix region, USA. Landscape ecology, 16: 611-626.
[13]. Jensen, J.R. (2007). Remote Sensing of the Environment: An Earth Resource Perspective. Pearson Prentice Hall, 592 pp.
[14]. Khoshgoftar, M.M., Talei, M., & Malekpour, P. (2010). Spatio-temporal modeling of urban sprawl: an approach based on integrating cellular automata and Markov chains. Proceedings of Geomatics (National Conference & Exhibition), 9 pp. (in Farsi).
[15]. Koomen, E., Stillwell, J., Bakema, A. & Scholten, H.J. (2007). Modelling Land-use Change, Progress and Applications. Netherlands, Springer, 410 p.
[16]. Lambin, E.F. (1997). Modelling and monitoring land-cover change processes in tropical regions. Progress in Physical Geography, 21: 375–393.
[17]. Mubea, K. W., Ngigi T. G., & Mundia C. N. (2010). Assessing application of Markove chain analysis in Predicting land cover change: A case study of NAKURU municipality. Journal of Advanced Computer Science & Technology, 12 (2): 19.
[18]. Norris, J.R. (1997). Markov Chains. Cambridge University Press, 237 p.
[19]. Parker, D.C., Manson, S.M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi agent systems for the simulation of land use and land cover change: A Review. Annals of the Association of American Geographers, 43: 314–337.
[20]. Peterson, L.K., Bergen, K.M., Brown, D.G., Vashchuk, L., & Blam, Y. (2009). Forested land-cover patterns and trends over changing forest management eras in the Siberian Baikal region. Forest Ecology and Management, 257: 911-922.
[21]. Stéphenne, N., & Lambin, E.F. (2001). A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). Agriculture, Ecosystems and Environment, 85: 154–161.
[22]. Tudun-Wada1, M.I., Tukur, Y.M., Hussaini, Y., Sani1, M.Z., Musa, I., & Lekwot, V.E. (2014). Analysis of forest cover changes in Nimbia Forest Reserve, Kaduna State, Nigeria using Geographic Information System and Remote Sensing techniques. International Journal of Environmental Monitoring and Analysis, 2(2): 91-99.
[23]. Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling. Journal of Environmental Management, 64: 273-284.
[24]. Wu, Q., Li, H.Q., Wang, R.S., Paulssen, J., He, Y., Wang, Min., Wang, B.H., & Wang, Z. (2006). Monitoring and predicting land use change in Beijing using remote sensing and GIS, Landscape and urban planning, Article in press.
| ||
آمار تعداد مشاهده مقاله: 718 تعداد دریافت فایل اصل مقاله: 1,512 |