ارزیابی شاخصهای گیاهی برآورد پوشش و تولید گیاهی مراتع مناطق خشک در دوره های رویشی مختلف | ||
خشک بوم | ||
مقاله 6، دوره 7، شماره 2، آبان 1396، صفحه 57-71 اصل مقاله (1.25 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.29252/aridbiom.7.2.57 | ||
نویسندگان | ||
فاطمه پردل* 1؛ عطاالله ابراهیمی2؛ زهرا عزیزی3 | ||
1دانش آموخته کارشناسی ارشد مرتعداری، دانشگاه شهرکرد | ||
2دانشیار دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد | ||
3استادیار گروه سنجش از دور و GIS، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران | ||
چکیده | ||
یکی از کاربردهای مهم سنجش از دور در مدیریت منابع طبیعی، تشخیص و ارزیابی کمی پوشش گیاهی است. هدف این پژوهش بررسی شاخصهای گیاهی حاصل از ماهواره لندست 8 به منظور ارائه مدل برآورد تاج پوشش سبز و تولید گیاهی در مرتع مرجن شهرستان بروجن طی فصل رویش است. به این منظور، در طول ترانسکتی به طول 10 کیلومتر و در فواصل حدود 400-1000متر در 19 محل نمونه برداری (به صورت تصادفی) و در هر نقطه با 5 کوادرات 2Î2 متری به صورت کوادراتی مرکزی و چهار کوادرات در چهار جهت اصلی اطراف آن 95 کوادرات در هر دوره آماربرداری و در طی 4 دوره عملیات صحرایی ً380 کوادرات، بین اردیبهشت تا شهریور سال 1393 اندازهگیریهای متغیرهای تولید (به روش اندازه گیری مضاعف) و پوشش تاجی (به روش پلات مشبک) انجام شد. پس از انجام تصحیح اتمسفری به روش FLAASH، 12 شاخص گیاهی برای تمام تصاویر محاسبه شد. سپس ارزشهای شاخصهای گیاهی در روابط رگرسیونی در برابر ارزشهای زمینی تاج پوشش سبز و تولید گیاهی قرار گرفت. نتایج نشان داد که شاخصهای ARVI، SARVI و EVI در برآورد تاج پوشش سبز گیاهی (81/=0r2) و تولید گیاهی (بهترتیب با ضرایب تبیین 61/0، 61/0 و 60/0) در رگرسیون درجه سوم مناسبترین گزینهها بودند. به طور کلی نتایج این تحقیق نشاندهنده ارتباط قوی شاخصهای گیاهی حاصل از لندست 8 با تاج پوشش سبز و تولید گیاهی است، هر چند تاج پوشش سبز گیاهی دارای ارتباط قویتری در مقایسه با تولید گیاهی با شاخصهای گیاهی میباشد. به طور کلی نتیجهگیری میشود که تولید و پوشش گیاهی مناطق خشک با دقت نسبتا بالایی می تواند به وسیله شاخصهای گیاهی مستخرج از تصاویر ماهواره ای لندست 8 برآورد گردد. | ||
کلیدواژهها | ||
تاج پوشش سبز؛ تولید گیاهی؛ دوره رویشی؛ ARVI؛ EVI؛ SARVI | ||
عنوان مقاله [English] | ||
Evaluating of the most suitable vegetation indices of estimating of canopy cover and above-ground phytomass in arid rangelands during different growth periods | ||
نویسندگان [English] | ||
F. Pordel1؛ A. Ebrahimi2؛ Z. Azizi3 | ||
1MSc in Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Iran | ||
2Associate Professor Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Iran | ||
3Assistant Professor, Ddepartment of Remote sensing and GIS, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
چکیده [English] | ||
One of the major applications of remote sensing in environmental resources management is change detection and quantitative assessment of green vegetation. This research assesses the vegetation indices (VIs) derived from Landsat 8 images for modeling canopy cover (CC) and above-ground phytomass (AGP) in Marjan rangelands, Boroujen. CC was measured (using double sampling method) and AGP was also estimated (using grid quadrat method) in 4 sampling periods during growing season in spring till summer using 95 quadrats that were laid out along a 10-km transect in line with 19 sampling points, 3 each contains 5 centroid quadrats with 4-m distance from central quadrat (Total 380 quadrats between May to September 2014). Vegetation indices VIs calculated with outcomes of FLAASH atmospheric correction method for four Landsat-8 image sets obtained between May to September. Ground measurement of plant GCC and AGP between May to September 2014 was regressed against vegetation indices VIs. Results of statistical analysis showed that ARVI, SARVI and EVI showed the highest correlation with CC (R2= 0.81) and with AGP (R2= 0.60, 0.61, 0.61 respectively).Even though, the correlation between CC and AGP with vegetation indicates was high, but CC shows the highest relationship with VIs in comparison to AGP. It can be conclude that arid rangelands vegetation can be accurately estimated with derived vegetation indices from Landsat-8 images, especially those concerned with atmospheric corrections, i.e., ARVI, SARVI and EVI. | ||
کلیدواژهها [English] | ||
canopy cover, Aabove-ground phytomass, vegetative stages, ARVI, SARVI, EVI | ||
مراجع | ||
[1]. Agon, V., & Bhamare, S.M. (2012). Change detection of vegetation cover Using Remote Sensing and GIS. Journal of research and development, 2: 1-12 [2]. Anderson, G.L., Hanson, J.D., & Hanson, R.H. (1993). Ewaluating Landsat Thematic Mapper Derived Vegetation Indices for Estimating Above-Ground Biomass on Semiarid Rangelands. Remote sensing of environment, 45: 165-175 [3]. Arzani, H. (1998). Using digital Landsat TM image data for estimate production and vegetation cover,. Iranian Jour. Natural Resources, 50: 11-21,)in Farsi). [4]. Asrar, G., Fuchs, M., Kanemasu, E.T., & Hatfield, J.L. (1984). Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance of wheat. Agronomy Journal, 76: 300–306, (in Farsi). [5]. Bannari, A., Huete, A.R., Morin, D., & Zagolski, F. (1996). Effets de la Couleur et de la Brillance du Sol Sur les Indices de Végétation. International Journal of Remote Sensing, 17: 1885-1906. [6]. Bannari, A., Morin, D., Bonn, F., & Huete, A.R. (1995). A review of vegetation indices. Remote Sensing Review, 13: 95–120 [7]. Birth, G.S., & Mc Vey, G. (1968). Measuring the color of growing turf with a reflectance spectroradiometer. Agronomy Journal, 60: 640-643 [8]. Bonham, C.D. (2013). Measurements for Terrestrial Vegetation. A John Wiley & Sons, Ltd., Publication [9]. Brinkmann, K., Dickhoefer, U., Schlecht, E., & Buerkert, A. (2011). Quantification of aboveground rangeland productivity and anthropogenic degradation on the Arabian Peninsula using Landsat imagery and field inventory data. Remote sensing of environment, 115: 465–474 [10].Darvishzadeh, R., Matkan, A.A., HosseiniaslA, & Ebrahimi Khusefi, M. (2012). Estimation of vegetation fraction in the Central arid region of Iran using satellite images (Case study: Sheitoor basin, Bafgh). Arid Biome Scientific and Research Journal, 2: 25-37, )in Farsi). [11]. Elvidge, C.D., & Chen, Z.K. (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indexes. Remote Sensing of the Environment, 54: 38–48. [12]. Esmaelli, N., & A. Ebrahimi. 2003. Necessity of Determining Animal Unit Requirmant Based on the Quality of Forage. Iranian J.Natural Res, 55:569-57 )in Farsi). [13]. Fahey, G.C., Collins, M., Mertens, D.R., & Moser, L.E. (1994). Forage quality, evaluation, and utilization. American Society of Agronomy, Inc. [14]. Farzadmehr, H., Arzani, H., Darvish Sefat, A., & Jafari, M. (2004). Study of Landsat TM image data for estimate production and vegetation cover in Hanna-Semirom. Iranian Journal Natural Resources, 57:350-339, )in Farsi). [15]. Flombaum, P., & Sala, O.E. (2007). A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. Journal of Arid Environments, 69: 352–358 [16]. Fraser, R.S., & Kaufman, Y.J. (1985). The Relative Importance of Aerosol Scattering and Absorption in Remote Sensing. IEEE transactions on geoscience and remote sensing., GE-23, [17]. Holben, B.V., E., Kaufman, Y., Tanre ´, D., & Kalb, V. (1992). Aerosol retrieval over land from AVHRR data — application for atmospheric correction. IEEE Transactions on Geoscience and Remote Sensing, 30: 212–232 [18]. Huete, A., R., Justice, C., & van Leeuwen, W. (1999). MODIS Vegetation Index(MOD13)Algorithm Theoretical Basis Document, NASA Goddard Space Flight Center. [19]. Huete, A.R. (1988). A soil adjusted vegetation index (SAVI). Remote sensing of environment, 25: 295-309 [20]. Huete, A.R., & Jackson, R.D. (1987). Suitability of Spectral Indices for Evaluating Vegetation Characteristics on Arid Rangelands. Remote Sensing of Environment, 23:232-213 [21]. Huete, A.R., Liu, H.Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote sensing of environment, 59: 440-451. [22]. Hyung Kim, D., Sexton, J.O., Noojipady, P., Huang, C., Anand, A., & Channan, S. (2014). Global, Landsat-based forest-cover change from 1990 to 2000. Remote sensing of environment, 155: 178–193. [23].Jackson, R.D., & Huete, A., R. (1991). Interpreting vegetation indices. Preventive Veterinary Medicine, 11: 185-200. [24]. Karnieli, A., Kaufman, Y.J., Remer, L., & Wald, A. (2001). AFRI — aerosol free vegetation index. Remote Sensing of the Environment, 77: 10–21. [25]. Kaufman, Y.J., & Tanre, D. (1996). Strategy for Direct and Inderect Methods for Correcting the aerosol effect on remote sensing: From AVHRR Remote sensing of environment, 55: 65-79. [26].Knipling, E.B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1: 155–159. [27]. Liu, H., Q., & Huete, A. (1995). A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Transactions On Geoscience And Remote Sensing, 33: 457-465. [28]. Lyon, J.G., Yuan, D., Lunetta, R.S., & Elvidge, C.D. (1998). A Change Detection Experiment Using Vegetation Indices. Photogrammetric Engineering & Remote Sensing, 64: 143-150. [29]. Maynard, C.L., Lawrence, R.L., Nielsen, G.A., & Decker, G. (2006). Modeling vegetation amount using bandwise regression and ecological site descriptions as an alternative to vegetation indices. GIsci Remote Senings, 43. [30]. Moghadam, M.R. (2009). Range and range management. Tehran University Press. [31]. Mohammadi golrang, M., Gazanchian, G.A., Ramzani Moghadam, R., Falahati, F., Rouhani, H., & Mashayekhi, M. (2008). Estimation of forage yields of some range plant species by plant height and diameter measurements. Iranian journal of Range and Desert Reseach, 15; 158_178,)in Farsi). [32]. Mohammadi, M., Ebrahimi, A., & Haqzade, H. (2012). Capability of IRS satellite on vegetation cover estimation (Case Study: Chaharmah-va-Bakhtiari). Renewable Natural Resources Research, (in Farsi). [33]. Moleele, N., Ringose, S., & Arnberg, W. (2001). Assessment of Vegetation Indices Useful for Browse forage prediction In Semi-arid rangelands. INT. Journal Remote Sensing, 22: 741-756. [34]. Morrison, I.M. (1980). Changes in the lignin and hemicellulose concentrations of ten varieties of temperate grasses with increasing maturity. Grass Forage Science, 35: 93-287. [35].Perry, C.R., & Lautenschlager, L.F. (1984). Functional Equvalence of Spectral Vegetation Indices. Remote Sensing of Environment, 14: 169-182. [36]. Porter, T.F., Chen, C., Long, J.H., & Lawrence, R.L. (2014). Estimating biomass on CRP pastureland: A comparison of remote sensing techniques. Biomas and Bioenergy, 66: 268-274. [37]. Qi, J.A., Chehbouni, A., Huete, A.R., & Sorooshian, A. (1994). A Modified Soil Adjusted Vegetation Index. Remote sensing of environment, 43: 1541-1552. [38]. Richardson, A.J., & Wiegand, C.L. (1997). Distinguishing Vegetation From Soil Background Information. Photogramnetric Engineering and Remote Sensing, 43: 1541-1552. [39]. Shafei, H, Hosseini, S. M., Ekhtesassi, M. R., and Mohtasham, Nia S. (2013). "Drought effects on vegetation degradation of Sistan". Iranian Journal of Range and Desert Reseach,20: 227-239. [41]. Sellers, P.J. (1985). Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing, 6: 1335–1372. [42]. Shiyomi, M., & Yoshimura, J. (2000). Measures of spatial heterogeneity for species occurrence or disease incidence with finite-counts. Ecological Research, 15: 13-20. [43]. Silleos, N.G., Alexandridis, T.K., Gitas, T.Z., & Perakis, K. (2006). Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto International, 21: 21-28. [44]. Tahmasebi, P. (2009). Regeland ecosystem. Pelk press, 276 p. )in Farsi). [45]. Tahmasebi, P., Ebrahimi, A., & Yarali, N.A. (2012). The Most Appropirate Quadrate Size and Shape for Determing Some Characteristics of a Semi-steppic Rangeland. Journal of Range andWatershed Management. Iranian Journal of Natural Resources, 65: 203_216, )in Farsi). [45]. Tucker, C.J. (1979a). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of environment, 8: 127−150. [46]. Yang, J., Weisberg, P.J., & Bristow, N.A. (2012). Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: Comparison of vegetation indices and spectral mixture analysis. Remote sensing of environment, 119: 62–71. [47]. Zehtabian, G., H. Azarnivand, H. Ahmadi, & S. Kalantari. 2013. Presentation of Suitable Model to Estimate Vegetation Fraction Using Satellite Images in Arid Region (Case Study: Sadough-Yazd, Iran). Journal of Rangeland Science, (3):108-117. | ||
آمار تعداد مشاهده مقاله: 1,054 تعداد دریافت فایل اصل مقاله: 1,993 |