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Keywords  Abstract 

Estimation of roadheader performance is one of the main topics in 
determining the economics of underground excavation projects. The 
poor performance estimation of roadheader scan leads to costly 
contractual claims. In this paper, the application of soft computing 
methods for data analysis called adaptive neuro-fuzzy inference 
system- subtractive clustering method (ANFIS-SCM) and artificial  
neural  network  (ANN) optimized  by  hybrid  particle  swarm  
optimization  and  genetic  algorithm  (HPSOGA) to estimate 

roadheader performance is demonstrated. The data to show the applicability of these methods were collected 
from tunnels for Istanbul’s sewage system, Turkey. Two estimation models based on ANFIS-SCM and ANN-
HPSOGA were developed. In these models, Schmidt hammer rebound values and rock quality designation 
(RQD) were utilized as the input parameters, and net cutting rates constituted the output parameter. Various 
statistical performance indices were used to compare the performance of those estimation models. The 
results indicated that the ANFIS-SCM model has strong potentials to estimate roadheader performance with 
high degrees of accuracy and robustness. 
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1. INTRODUCTION 

Roadheader is a mechanized excavation 
equipment used for excavating purposes in 
underground mining applications and civil 
tunnels. Based on its capabilities to cut virtually 
any tunnel profile, roadheaders have been steadily 
endorsed by civil construction contractors looking 
for ways to improve productivity and reduce costs 
[1]. Estimation of the excavation performance of 
roadheader for any geological formation is one of 
the main concerns in determining the economic 
aspects of a mechanized mining and/or tunneling 
operation. The performance analysis of 
roadheader machines plays an important role in 
the cost and time of underground completion; 
therefore, correct estimation of the roadheader 
performance has a key impact on the effective 
planning of the excavation project [2]. Factors 
affecting the excavation performance include: (i) 
cutting mode (overcutting, sumping, 
undercutting, traversing); (ii) rock mass 
properties (joints, fractures, bedding planes, fault 

zones); (iii) cutting tools (roller cutters, drag bits); 
(iv) intact rock properties (tensile strength, 
elasticity, abrasiveness, plasticity, uniaxial 
compressive strength (UCS), brittleness, 
hardness); (v) machine parameters (torque, 
machine weight, thrust and available power); (vi) 
size and shape of the opening;  (vii) operational 
factors (support requirements, gradient, haulage 
capacity, water inflow); (viii) cutting geometry 
(cutting depth, angle of attack, spacing of the 
cutters, rake angle); and (ix) operator skills [3]. 

The estimation of roadheader performance is a 
highly complex task. Nevertheless, several 
researches are conducted to find a significant 
relationship between the roadheader 
performance and other parameters influencing it 
[4-11]. Researchers have also focused on 
developing performance estimation models for 
roadheaders. Sandbak [12] and Douglas [13] 
proposed a rock classification system that could 
be employed to explain the changes of roadheader 
advance rates at San Manuel Copper Mine in an 
inclined drift at an 11% grade. Bilgin and Seyrek 
[14]  [15] and Ebrahimabadi and Azimipour [16] 
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studied a roadheader performance model based 
on rock quality designation (RQD) and UCS. Fowel 
and Johnson [17] introduced a model in which 
three parameters of the swept area, cutter head 
advance, and rate per minute are applied to model 
the rate of the roadheader performance based on 
the results from simulation of excavating 
machines in the laboratory. Copur and Ozdemir 
[18] applied the data collected from a roadheader 
at Colorado School of Mine to predict the 
roadheader performance based on the three 
factors of the roadheader weight, cutterhead 
power, and roadheader penetration index. Bilgin 
and Dincer [19] studied some geological and 
geotechnical factors affecting the performance of 
a  roadheader in an inclined tunnel. Ebrahimabadi 
and Goshtasbi [20] applied predictive models for 
roadheader’s cutting performance in coal measure 
rocks.  Ebrahimabadi and Goshtasbi [21] have also 
suggested a method to predict the performance of 
roadheaders based on the Rock Mass Brittleness 
Index. Abdolreza and Siamak [2] developed a 
model to predict roadheader performance using 
rock mass properties. 

Although previous efforts are valuable but 
these empirical models are not capable of 
distinguishing the sophisticated structures 
involved in a dataset in many cases (Salsani and 
Daneshian [1]). This was a primary reason for 
seeking an improved model. To do this, already 
developed methods such as soft computing 
methods, which can successfully model the 
behavior of linear and nonlinear involved in data, 
can be useful. In this paper, the application of soft 
computing methods for data analysis called 
adaptive neuro-fuzzy inference system-
subtractive clustering method (ANFIS-SCM) and 
artificial neural network (ANN) optimized by 
hybrid particle swarm optimization and genetic 
algorithm (HPSOGA) to estimate the roadheader 
performance is demonstrated. In these models, 
Schmidt hammer rebound values and rock quality 
designation (RQD) are utilized as the input 
parameters, and net cutting rates are output 
parameters. The data to show the applicability of 
these methods were collected from tunnels for 
Istanbul’s sewage system, Turkey. 

2. MATERIALS AND METHODS 

2.1. Artificial neural network - hybrid particle 
swarm optimization and genetic algorithm  

2.1.1. Artificial neural network 

Artificial neural networks (ANNs) have 
appeared as a result of simulation of biological 
nervous systems, such as brain, on a computer. 
But biological neural networks are much more 

complicated than the mathematical models used 
for ANNs [22]. 

ANNs are parallel information processing 
methods that can express complex and nonlinear 
relationship use, number of input-output training 
patterns from the experimental data. ANNs 
provide a nonlinear mapping between inputs and 
outputs by their intrinsic abilities [23]. The 
success in obtaining a reliable and robust network 
strongly depends on the correct data 
preprocessing, appropriate architecture selection, 
and apt network training choice [24]. The ANN is 
trained by performing optimization of weights for 
each node interconnection and bias terms, until 
the output values at the output layer neurons are 
as close as possible to the actual outputs [25]. 

The ANN is usually divided into three parts as 
follows: the input layer, the hidden layer, and the 
output layer. The information included in the 
input layer is mapped to the output layers through 
the hidden layers. Each unit can only send its 
output to the units on the higher layer and receive 
its input from the lower layer. This structure is 
known as multilayer perceptron (MLP). More 
hidden layers can be added to obtain an entirely 
powerful multilayer network [22]. 

The data are split into two sets, a training data 
set and a validating data set. The model is 
produced using only the training data. The 
validating data are used to estimate the accuracy 
of the model performance. In training a network, 
the objective is to find an optimal set of weights 
[25]. 

2.1.2 Genetic algorithm 

The genetic algorithm (GA) is a frequently used 
evolutionary computation technique. This method 
was originally developed by Holland John [26] and 
since then it has been successfully applied to 
various optimization problems. In the GA, a 
candidate solution for a particular problem is 
called an individual or a chromosome and consists 
of a linear list of genes [27-30]. 

The GA starts off with an initial population of 
randomly generated chromosomes. During 
successive iterations, named generations, the 
initial chromosomes advance towards stronger 
chromosomes by reproduction among candidate 
solutions of the previous generation. In the next 
step the binary strings are decoded and converted 
into optimization variable values, using linear 
scaling. The objective function is evaluated from 
the established optimization variable values and a 
measure of worth or fitness is evaluated. In the 
natural world, this would be an individual’s ability 
to survive in their environment [27-30]. 
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In the next step, the individuals with the 
highest fitness in the population are selected as 
parents and are coupled to breed new individuals 
for the next generation. In the final step, genetic 
operators are used to manipulate the characters 
(genes) of chromosomes directly, using the 
assumption that certain individual’s gene codes, 
on average, produce fitter individuals. The genetic 
operators of GA include reproduction; crossover 
and mutation are used for the parents with certain 
probabilities to generate new individuals. The 
reproduction operator simply selects, in 
proportion to fitness, an individual and allows it to 
survive by copying it directly into the next 
generation. The crossover operator creates two 
new chromosomes from two existing 
chromosomes by randomly choosing a crossover 
point and exchanging the part of parents after this 
crossover point. The mutation operator produces 
new chromosomes by randomly changing the 
genes of existing chromosomes [27-30]. 

The fitness of the newly produced offspring is 
then evaluated using the same criterion, and the 
chromosomes in the current population are then 
replaced by their offspring according to a certain 
replacement strategy. Such a GA cycle is repeated 
until a set termination criterion is reached. 

2.1.3 Particle swarm optimization 

The particle swarm optimization (PSO) is a 
population-based stochastic optimization 
technique presented by Eberhart and Kennedy 
[31] in order to solve problems with continuous 
search spaces. PSO inspired by the social behavior 
of fish schooling or bird flocking. The algorithm 
works by initializing a flock of birds randomly 
over the searching space, where every bird is 
called a ‘particle.’ These ‘particles’ fly with a 
certain velocity and locate the best global position 
after some iteration. The position of each particle, 
xi, representing a particular solution of the 
problem, is used to compute the value of the 
fitness function to be optimized. Each particle may 
change its position and consequently may explore 
the solution space, simply varying its associated 
velocity. In fact, the main PSO operator is the 
velocity update, which considers the best position, 
in terms of fitness value reached by all the 
particles during their paths,  , and the best position 
that the agent itself has reached during its search,  
, resulting in a migration of the entire swarm 
toward the global optimum [32]. 

The particle moves around according to its 
velocity and position at every iteration; the cost 
function to be optimized is evaluated for each 
particle in order to rank the current location. The 

position of each particle is updated using its 
velocity vector as shown in Eq. (2). 
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where,  is the velocity vector at iteration t, r1 
and r2 represents random numbers in the range 
[0,1]; denotes the best ever particle position of 
particle i, and  corresponds to the best global 
position in the swarm up to iteration t. The 
remaining terms are problem-dependent 
parameters; for example, C1 and C2 represent 
“trust” parameters indicating how much 
confidence the current particle has in itself (C1: 
cognitive parameter) and how much confidence it 
has in the swarm (C2: social parameter), and ω is 
the inertia weight [29, 33, 34]. 

2.1.4 Hybrid genetic algorithm and particle swarm 
optimization 

Although the GAs have been successfully used 
to a wide range of problems, using the GAs for 
large-scale optimization could be very expensive 
due to its requirement of a large number of 
function evaluations for convergence. This would 
result in a prohibitive cost for the computation of 
function evaluations even with the best 
computational facilities available today [35]. 
Considering the efficiency of the PSO and the 
compensatory property of the GA and the PSO, 
combining the searching abilities of both methods 
into a single algorithm seems to be a logical 
approach. In this paper, the hybrid HPSOGA, 
resulting from combining GA and PSO and 
originally presented by Juang [36], was 
administered. 

2.2 Adaptive network-based fuzzy inference system 

A fuzzy inference system can model the 
qualitative aspects of human knowledge and 
reasoning processes without employing precise 
quantitative analyses. Neural networks are 
information-processing programs inspired by 
mammalian brain processes. They are composed 
of a number of interconnected processing 
elements analogous to neurons. The training 
algorithm feeds a set of data inputs to the neural 
networks and checks their output results. 
Combining neural networks with fuzzy logic has 
been shown to reasonably emulate the human 
process of expert decision-making. In traditional 
neural networks, only weight values change 
during learning, thus the learning abilities of 
neural networks are combined with the inference 
mechanism of the fuzzy logic for a neuro-fuzzy 
decision-making system [37]. 
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An adaptive neural network is a network 
structure consisting of several nodes 
interconnected through directional links. Each 
node is characterized by a node function with 
fixed or adjustable parameters. Once the fuzzy 
inference system is initialized, neural network 
algorithms can be utilized to determine the 
unknown parameters (premise and consequent 
parameters of the rules) minimizing the error 
measure, as conventionally defined for each of the 
system’s variables. Due to this optimization 
procedure, the system is called adaptive [38]. 

The architecture of ANFIS consists of five 
layers. A brief introduction of the model follows. 

Layer 1: Each node i in this layer generates a 
membership grade of a linguistic label. For 
instance, the node function of the ith node might 
be: 
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where, x is the input to node i, and Ai is the 
linguistic label (small, large, etc.) associated with 
this node; and  , ,i i iV b  is the parameter set that 

changes the shapes of the MF. Parameters in this 
layer are referred to as the “premise parameters.” 

Layer 2: Each node in this layer calculates the 
“firing strength” of each rule via multiplication: 

    2,1.2  iyxWQ BiAiii   (4) 

Layer 3: The ith node of this layer calculates the 
ratio of the ith rule's firing strength to the sum of 
all rules’ firing strengths: 
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For convenience, outputs of this layer will be 
called “normalized firing” strengths. 

Layer 4: Every node i in this layer is a node 
function: 

 iiiiiii ryqxpWfWQ 4
 (6) 

where, 
iW  is the output of layer 3. Parameters 

in this layer will be referred to as ”consequent 
parameters.” 

Layer 5: The single node in this layer is a circle 
node labeled R that computes the “overall output” 
as the summation of all incoming signals: 






i

ii

iii
w

fw
fWOutputQverallQ5

 

(7
) 

Also, in this study, subtractive clustering 
method (SCM) is utilized to identify the 
antecedent MFs. 

2.2.1 Subtractive clustering method 

The SCM as introduced by Chiu [39] features 
data points as the candidates for the center of 
clusters. The algorithm continues as follow: 

At first a collection of n data points 

 1 2 3, , ,..., nX X X X  in an M-dimensional space is 

considered. Since each data point is a candidate for 
a cluster center, a density measure at data point 

iX  is defined as: 
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where, ra is a positive constant. Therefore, a 
data point will have a high density value if it has 
many neighboring data points. The radius ra 
defines a neighborhood; data points outside this 
radius contribute only slightly to the density 
measure. After the density measure of each data 
point has been calculated, the data point with the 
highest density measure is selected as the first 
cluster center. Let Xc1 be the point selected and Dc1 
its density measure. Next, the density measure for 
each data point xi is revised as follows: 
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where, ra is a positive constant. After the 
density calculation for each data point is revised, 
the next cluster center Xc2 is selected and all of the 
density calculations for data points are revised 
again. This process is repeated until a sufficient 
number of cluster centers are generated. 

3. ESTIMATION OF ROADHEADER 
PERFORMANCE 

3.1. Inputs and output data 
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Dataset applied in this study for determining 
the relationship between the set of input (Schmidt 
hammer rebound values  and RQD) and output 
(net cutting rates of the roadheader for each zone) 
variables are gathered from open source literature 
[40, 41]. These data recorded previously during 
the construction of tunnels for Istanbul’s sewage 
system have been evaluated. Schmidt hammer 
rebound values from 36 different rock zones were 
collected together with the net cutting rates of 
roadheader for each zone. Rebound tests were 
carried out with a Proceq N-type hammer. On any 
one rock type at least three sets of tests were 
conducted, depending on the geology of the 

encountered rock formations. At each test point 
15–20 continuous rebound values were 
measured, and the suspected low values were 
excluded from the calculation of a mean value (R1-
values) if they satisfied Chauvenet’s criterion 
(Test Procedure 1). Test Procedure 2: Select the 
peak rebound value from five continuous impacts 
at a point and discard the remaining values (R2-
values) [42]. Test Procedure 3: Select the peak 
rebound value from ten continuous impacts at a 
point and discard the remaining values (R3-
values) [43]. The partial dataset used in this study 
is presents in Table 1. Also, descriptive statistics of 
all data sets are illustrated in Table 2. 

Table 1. Partial dataset used in this study [40, 41]. 

Zone 
Description of 
rock formation 

Input parameters 
Output 

parameter 
RQD 
(%) 

R1-value R2-value R3-value 
Net cutting rate 

(m3/h) 

1 Mudstone 0 29 31 32 25 

2 Shale 0 35 35 43 20.4 

3 Shale 23 37 34 44 20.4 

4 Mudstone 0 38 36 45 16.2 

5 Shale-Siltstone 19 38 36 46 20.3 

6 Shale 19 31 30 34 23 

7 Sandstone–Greywacke 0 48 45 49 23 

8 Shale with Clay Hands 23 37 35 38 19.6 

9 Shale with Clay Hands 19 38 41 45 18.4 

10 Shale 33 47 45 50 21.4 

 

Table 2. Statistical description of dataset utilized for the construction of the model. 

Parameter Min Max Average 
RQD (%) 0 100 53.94 
R1-value 29 63 49.78 
R2-value 30 61 47.67 
R3-value 32 64 51.75 

Net cutting rate (m3/h) 2 25 11.39 

 

3.2. Pre-processing of data 

In data-driven system modeling methods, 
some pre-processing steps are commonly 
implemented prior to any calculations, to 
eliminate any outliers, missing values, or bad data. 
This step ensures that the raw data retrieved from 
a database is perfectly suitable for modeling. In 
order to soften the training procedure and 
improve the accuracy of prediction, all data 
samples are normalized to adapt to the interval [0, 
1] according to the following linear mapping 
function: 

minmax

min

xx

xx
xM




  (10) 

where x is the original value from the dataset, 
xM is the mapped value, and xmin (xmax) denotes the 
minimum (maximum) raw input values, 
respectively. 

3.3. Estimation of roadheader performance using 
ANN-HPSOGA model 

3.3.1. Tuning parameters for GA and PSO 

To develop an accurate ANN model, the 
training and validation processes are important 
steps. In the training process, a set of input-output 
patterns is repeated to the ANN. From that, 
weights of all the interconnections between 
neurons are adjusted until the specified input 
yields the anticipated output. Through these 
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activities, the ANN learns the correct input-output 
response behavior. The model training stage 
includes choosing a criterion of fit (mean squared 
error) and an iterative search algorithm to find the 
network parameters that minimizes the criterion. 
Hybridizing GA with PSO (HPSOGA) was used in 
an effort to formalize a systematic approach to 
training the ANN, and to insure the creation of a 
valid model. It was used to perform global search 
algorithms to update the weights and biases of the 
neural network. The control parameters used for 
running PSO and GA are shown in Tables 3 and 4 
respectively. 

Table 3. The control parameters used for running 
the PSO. 

Parameter Value 
Number of population (swarm size) 100 

Number of generations 1000 
Personal learning coefficient 1.4962 

Global learning coefficient 1.4962 
Inertia weights 0.73 

Fitness Mean squared error 

 

Table 4. The control parameters used for running 
the GA. 

Parameter Value 
Number of population 100 
Number of generations 1000 
Crossover probability 0.7 

Mutation probability 0.2 
Selection function Ranking 

Fitness Mean squared error 

3.3.2. Network architecture 

Architecture of the ANN model includes the 
type of network, number of input and output 
neurons, transfer function, number of hidden 
layers as well as number of hidden neurons. 
Generally, the input neurons and output neurons 
are problem specific ([44]). In this paper, multi-
input single-output structure had been utilized; 
therefore, there will be only one output neuron. 
ANN-HPSOGA model was utilized to create a 
prediction model for the estimation of roadheader 
performance from available data, using MATLAB 
environment. Fig. 1 shows the architecture of 
ANN-HPSOGA model for the estimation of 
roadheader performance. As it can be seen in 
Fig.1, R1-values, R2-values, R3-values and RQD 
were defined as input parameters into the ANN-
HPSOGA model and the net cutting rate as output. 
A dataset that included 36 data points was 
employed in the current study, while 27 data 
points (75%) were utilized for constructing the 
model and the remainder data points (i.e. 9 data 
points) were utilized for assessment of degree of 
accuracy and robustness. 

 

Figure 1. The architecture of ANN-HPSOGA model. 

Also, it is important that the transfer function 
possesses the properties of differentiability and 
continuity. Generally, log sigmoid function is 
utilized in the hidden layer and the output 
generated has a value between 0 and 1 however, 
the linear transfer function is more suitable in 
output [44]. The equations for the log and linear 
transfer functions used in this study are shown in 
Eqs. (11) and (12): 
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3.4. Estimation of roadheader performance using 
ANFIS-SCM model 

In a conventional fuzzy inference system, the 
number of rules is decided by an expert who is 
familiar with the target system to be modeled. In 
ANFIS simulation, however, no expert is available 
and the number of membership functions (MFs) 
assigned to each input variable is chosen 
empirically, that is, by plotting the data sets and 
examining them visually, or simply by trial and 
error. For data sets with more than three inputs, 
visualization techniques are not very effective and 
it often relies on trial and error. Generally, it 
becomes very difficult to describe the rules 
manually in order to reach the precision required 
with the minimized number of membership 
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functions (MFs), when the number of rules are 
larger than 3. Therefore, an automatic model 
identification method becomes a must, which is 
often realized by means of a training set of input-
output pairs (Jang 1993; Jang et al. 1997; [45, 46]). 

The SCM is an attractive approach to the 
synthesis of ANFIS networks, which estimates the 
cluster number and its cluster location 
automatically. In subtractive clustering algorithm, 

each sample point is seen as a potential cluster 
center. By using this approach computation time 
becomes linearly proportionate to data size yet 
reamins independent of the dimension problem 
under consideration ([45, 47-49]). 

Fig. 2 shows the fuzzy architecture of ANFIS-
SCM model for the estimation of roadheader 
performance. The specifications of the ANFIS-SCM 
model are illustrated in Table 5. 

 

Figure 2. The architecture of ANFIS-SCM model. 

Table 5. Specifications of the ANFIS-SCM model. 

Parameter Description 
Membership function type Gaussian 

Output membership function Linear 
Number of nodes 275 

Number of linear parameters 135 
Number of nonlinear parameters 216 

Total number of parameters 351 

Number of training data pairs 27 
Number of testing data pairs 9 

Number of fuzzy rules 27 

 

By using the SCM, the cluster center of all data 
was determined. Then, the numbers of subtractive 
centers were utilized to generate automatic MFs 
and rule base as well as the location of MF within 
dimensions. Fig. 3 shows the membership 
functions of the input parameters for ANFIS-SCM 
model. The numbers of rules achieved for the 
ANFIS-SCM model are 27. 

4. MODELS PERFORMANCE EVALUATION 

4.1. Performance criteria 

To evaluate the performances of the ANFIS-
SCM and ANN-HPSOGA models, root-mean-
squared-error (RMSE), mean squared error 
(MSE), and squared correlation coefficient (R2) 
were chosen to be the measure of accuracy. N is 
the number of samples, y and y' are the measured 

and predicted values, respectively. RMSE, MSE and 
R2 could be defined  as follows: 

 



N

i

ii yy
N

RMSE
1

2'1  (13) 

 



N

i

ii yy
N

MSE
1

2'1
 (14) 

 

N

y

y

yy

R
N

i

iN

i

i

N

i

ii


















1

2'

1

2

1

2'

2 1
 

(15) 

where 
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Figure 3. Membership functions of the ANFIS-SCM model. 

4.2. Training and validation models 
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A comparison between the results of ANFIS-
SCM and ANN-HPSOGA models is shown in Table 
6. As it can be observed from this table, the ANFIS-
SCM model with RMSE=0.095, MSE=0.009 and 

R2=0.83 for testing datasets performs better than 
the ANN-HPSOGA model for estimating 
roadheader performance. 

Table 6. A comparison between the results of ANFIS-SCM and ANN-HPSOGA models for training and testing 
datasets. 

Model RMSE MSE R2 

ANFIS-SCM 
Training datasets 0.039 0.0015 0.98 
Testing datasets 0.095 0.009 0.83 

ANN-HPSOGA 
Training datasets 0.167 0.028 0.94 
Testing datasets 0.241 0.058 0.81 

 

The obtained RMSE, MSE and R2 values for 
training datasets indicate the capability of 
learning the structure of data samples, whereas 
the results of testing dataset reveal the 
generalization potential and the robustness of the 
system modeling methods. 

Furthermore, a correlation between the 
estimated values of net cutting rate by ANFIS-SCM 
and ANN-HPSOGA models and measured values 
for 36 data sets at training and testing phases is 
shown in Figs. 4 and 5. 

Also, a comparison between estimated values 
of net cutting rate by ANFIS-SCM and ANN-
HPSOGA models and measured values for 36 data 
sets at training and testing phases is shown in Figs. 
6 and 7. The results of the ANFIS-SCM model in 
comparison with actual data shows the precision 
of ANFIS-SCM model. 

 

(a) 

 

(b) 

Figure 4. Correlation between measured and 
estimated net cutting rates for training datasets, a) 
ANFIS-SCM model, b) ANN-HPSOGA model 

 

(a) 
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(b) 

Figure 5. Correlation between measured and 
estimated net cutting rate for testing datasets, a) 
ANFIS-SCM model, b) ANN-HPSOGA model 

5. CONCLUSIONS 

Estimation of the excavation performance of 
roadheader for any geological formation is one of 
the main concerns in determining the economic 
aspects of a mechanized mining and/or tunneling 
operation. The performance analysis of 
roadheader machines plays an important role in 
the required cost and time of underground 
completion; therfore, correct estimation of the 
roadheader performance is a significant 
determinant in the effective planning of the 
excavating project. In this field, several studies 
have been conducted to find a significant 
relationship between the roadheader 
performance and other parameters influencing its 
performance.  

 

 

(a) 

 

Figure 6. Comparison between measured and estimated net cutting rates for training datasets, a) ANFIS-SCM 
model, b) ANN-HPSOGA model 
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(a) 

 

(b) 

Figure 7. A comparison between measured and estimated net cutting rates for testing datasets, a) ANFIS-SCM 
model, b) ANN-HPSOGA model 

Although previous efforts are valuable, these 
empirical models are not capable of distinguishing 
the sophisticated structures involved in a dataset. 
For doing the purpose, utilize of developed 
methods such as soft computing methods, which 
can successfully model the behavior of linear and 
nonlinear involved in data, is useful. In this paper, 
the application of soft computing methods for data 
analysis called adaptive neuro-fuzzy inference 
system- subtractive clustering method (ANFIS-
SCM) and artificial  neural  network  (ANN) 
optimized by hybrid particl swar  optimization  
and genetic algorithm (HPSOGA) to estimate 
roadheader performance is demonstrated. In 
these models, Schmidt hammer rebound values 
and rock quality designation (RQD) were utilized 
as the input parameters, and net cutting rates 
constituted the output parameter. 

It was concluded that, 

• Implementation hybrid the particle 
swarm optimization and genetic algorithm 
(HPSOGA) as an optimizer of connection weights 
of artificial neural network to estimate the 

roadheader performance was demonstrated in 

detail. 

• The HPSOGA has high robustness in 
optimization issue due to integrating global and 
local search abilities of GA and PSO. The results 
showed that it can be used to tune the weights of 
ANN model for the assessment of roadheader 

performance. 

• A comparison was made between ANFIS-
SCM and ANN-HPSOGA models, using 36 data 
samples, and based on the performance indices 
RMSE, MSE and R2, ANFIS-SCM with RMSE=0.095, 
MSE=0.009 and R2=0.83 was selected as the best 

predictive model. 

• Consequently, it may be concluded that 
ANFIS-SCM is a reliable system modeling 
technique for estimating roadheader performance 
with a highly acceptable degree of accuracy and 

robustness. 
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• This study shows that the ANFIS-SCM and 
ANN-HPSOGA approaches can be used as powerful 
tools for modeling some problems involved in 
mining engineering. 
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